

TE 158 – Operação de Sistemas Elétricos de Potência

Lista de Exercícios 1

Prazo de Entrega: 22/10/2014

 Dados os valores dos fasores de tensão nas barras 1 e 2 e a impedância da linhas de transmissão representada na Figura 1, determine o fluxo de potência ativa e reativa que flui no sistema.

$$\overline{V_1} = 1,00 \angle 0^{\circ}$$
 $\overline{V_2} = 0,95 \angle -4,61^{\circ}$ $\overline{S_{12}}$ $\overline{Z}_{LT} = (0,01+j0,1) \text{ pu}$ 2

Figura 1 - Linha de Transmissão 1 – 2

 Considere o sistema apresentado na Figura 2 e determine a relação entre as correntes injetadas e a tensão nas barras pela expressão (1) (Concurso Eletrobrás 2010).

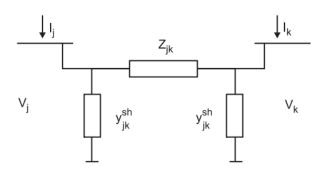


Figura 2 - Linha de Transmissão j - k

$$\begin{bmatrix} I_j \\ I_k \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_j \\ V_k \end{bmatrix} \tag{1}$$

3) Para a rede de quatro barras da Figura 3, montar a matriz de admitância \bar{Y} em função dos parâmetros genéricos.

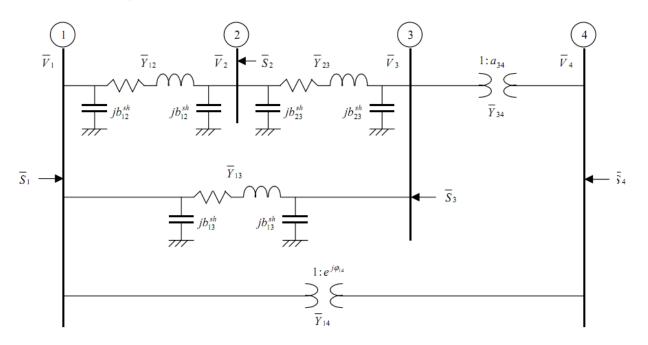


Figura 3 - Sistema exemplo do exercício 3

4) Considere o sistema de 4 barras da Figura 4, cujos dados estão nas Tabelas 1 e 2. Determine os ângulos nas barras usando o fluxo de carga linear (FCCC). Determine ainda a distrbibuição de fluxo no sistema (usando equação linear dos fluxos), mostrando o fechamento do balanço de potência por barra.

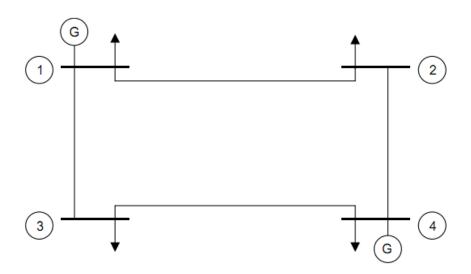


Figura 4 - Sistema de 4 barras

Tabela 1 - Dados das linhas

Linha	Impedância série			
Lillia	r[pu]	x[pu]		
1–2	0,01008	0,05040		
1–3	0,00744	0,03720		
2–4	0,00744	0,03720		
3–4	0,01272	0,06360		

Tabela 2 - Dados das barras

	Barra $V[pu]$	0[1	Geração		Carga		
		V[pu]	θ [graus]	P [MW]	Q [Mvar]	P [MW]	Q [Mvar]
	1	1,00	0	_	_	50	30,99
	2	_	_	0	0	170	105,35
	3	_	_	0	0	200	123,94
	4	1,02	_	318	_	80	49,58