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C H A P T E R

4

Higher Order Linear Equations

4.1

2. We will first rewrite the equation as y′′′ + (sin t/t)y′′ + (3/t)y = cos t/t. Since
the coefficient functions p1(t) = sin t/t, p2(t) = 3/t and g(t) = cos t/t are continuous
for all t 6= 0, the solution is sure to exist in the intervals (−∞, 0) and (0,∞).

4. The coefficients are continuous everywhere, but the function g(t) = ln t is defined
and continuous only on the interval (0,∞). Hence solutions are defined for positive
reals.

8. We have

W (f1, f2, f3) =

∣∣∣∣∣∣
2t− 3 2t2 + 1 3t2 + t

2 4t 6t+ 1
0 4 6

∣∣∣∣∣∣ = 0

for all t. Thus by the extension of Theorem 3.3.1 the given functions are linearly
dependent. To find a linear relation we have c1(2t− 3) + c2(2t2 + 1) + c3(3t2 + t) =
(2c2 + 3c3)t2 + (2c1 + c3)t+ (−3c1 + c2) = 0, which is zero when the coefficients
are zero. Solving, we find c1 = 1, c2 = 3 and c3 = −2. This implies that (2t− 3) +
3(2t2 + 1)− 2(3t2 + t) = 0.

13. By direct substitution, for y1 = et we get y′′′1 + 2y′′1 − y′1 − 2y1 = et + 2et − et −
2et = 0, for y2 = e−t we get y′′′2 + 2y′′2 − y′2 − 2y2 = −e−t + 2e−t + e−t − 2e−t = 0
and for y3 = e−2t we get y′′′3 + 2y′′3 − y′3 − 2y3 = −8e−2t + 8e−2t + 2e−2t − 2e−2t =



86 Chapter 4. Higher Order Linear Equations

0. Therefore, y1, y2, y3 are all solutions of the differential equation. We now compute
their Wronskian. We have

W (y1, y2, y3) =

∣∣∣∣∣∣
et e−t e−2t

et −e−t −2e−2t

et e−t 4e−2t

∣∣∣∣∣∣ = e−2t

∣∣∣∣∣∣
1 1 1
1 −1 −2
1 1 4

∣∣∣∣∣∣ = −6e−2t.

17. We note first that (sin2 t)′ = 2 sin t cos t = sin 2t. Then

W (5, sin2 t, cos 2t) =

∣∣∣∣∣∣
5 sin2 t cos 2t
0 sin 2t −2 sin 2t
0 2 cos 2t −4 cos 2t

∣∣∣∣∣∣ = 5(−4 sin 2t cos 2t+ 4 cos 2t sin 2t) = 0.

Also, sin2 t = (1− cos 2t)/2 = (1/10)5 + (−1/2) cos 2t and hence sin2 t is a linear
combination of 5 and cos 2t. Thus the functions are linearly dependent and their
Wronskian is zero.

19.(a) Note that dk(tn)/dtk = n(n− 1) . . . (n− k + 1)tn−k, for k = 1, 2, . . . , n . Thus
L[tn] = a0 n! + a1 [n(n− 1) . . . 2] t+ . . . an−1 n t

n−1 + an t
n.

(b) We have dk(ert)/dtk = rkert, for k = 0, 1, 2, . . . . Hence L[ert] = a0 r
nert +

a1r
n−1ert + . . . + an−1r e

rt + an e
rt = [a0 r

n + a1r
n−1 + . . . + an−1 r + an ]ert.

(c) Set y = ert, and substitute into the ODE. It follows that r4 − 5r2 + 4 = 0 , with
r = ± 1,± 2 . Furthermore, W (et, e−t, e2t, e−2t) = 72 .

23. After writing the equation in standard form, observe that p1(t) = 2/t. Based
on the results in Problem 20, we find that W ′ = (−2/t)W , and hence W = c/t2.

25.(a) On the interval (−1, 0), f(t) = t2|t| = −t3 = −g(t), and on the interval (0, 1),
f(t) = t2|t| = t3 = g(t). This shows that on these intervals the functions are linearly
dependent.

(b) On the interval (−1, 1) these two functions are linearly independent, because
if c1f(t) + c2g(t) = 0 for every t, then for t = 1/2 we obtain c1 + c2 = 0 and for
t = −1/2 we get c1 − c2 = 0, which implies that c1 = c2 = 0.

(c) The Wronskian is

W (f, g)(t) =

∣∣∣∣t2|t| t3

3t|t| 3t2

∣∣∣∣ = 3t4|t| − 3t4|t| = 0.

27. Differentiating et and substituting into the differential equation we verify that
y = et is a solution: (2− t)et + (2t− 3)et − tet + et = 0. Now, as in Problem 26,
we let y = v(t)et. Differentiating three times and substituting into the differential
equation yields (2− t)etv′′′ + (3− t)etv′′ = 0. Dividing by (2− t)et and letting w =
v′′ we obtain the first order separable equation w′ = −(t− 3)w/(t− 2) = (−1 +
1/(t− 2))w. Separating t and w, integrating, and then solving for w yields w =
v′′ = c1(t− 2)e−t. Integrating this twice the gives v = c1te

−t + c2t+ c3 so that
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y = vet = c1t+ c2te
t + c3e

t, which is the complete solution, since it contains the
given y1(t) and three constants.

4.2

2. The magnitude of −1 +
√

3 i is R =
√

4 = 2 and the polar angle is 2π/3 . Hence
the polar form is given by −1 +

√
3 i = 2 e2π/3 i. The angle θ is only determined

up to an additive integer multiple of 2π.

8. Writing 1− i in the form Reiθ, we have R =
√

2 and θ = −π/4. Thus 1− i =√
2 ei(−π/4+2mπ) (where m is any integer), and hence (1− i)1/2 = 4

√
2 ei(−π/8+mπ).

We obtain the two square roots by setting m = 0, 1. They are 4
√

2 e−iπ/8 and
4
√

2 ei7π/8.

12. The characteristic equation is r3 − 3r2 + 3r − 1 = (r − 1)3 = 0. The roots are
r = 1, 1, 1 . The roots are repeated, hence y = c1e

t + c2te
t + c3t

2et.

15. The characteristic equation is r6 + 1 = 0 . The roots are given by r = (−1)1/6,
that is, the six sixth roots of −1 . They are e−πi/6+mπi/3, m = 0, 1, . . . , 5 . Explic-
itly, r = (

√
3 − i)/2 , (

√
3 + i)/2 , i , −i , (−

√
3 + i)/2 , (−

√
3 − i)/2 . Note that

there are three pairs of conjugate roots. Thus y = e
√
3 t/2 [c1 cos (t/2) + c2 sin (t/2)] +

c3 cos t+ c4 sin te−
√
3 t/2 [c5 cos (t/2) + c6 sin (t/2)].

23. The characteristic equation is r3 − 5r2 + 3r + 1 = 0. Using the procedure
suggested following Eq.(12) we try, since an = a0 = 1, r = 1 as a root and find that
indeed it is. Factoring out r − 1 we are then left with r2 − 4r − 1 = 0, which has

the roots 2±
√

5. Hence the general solution is y = c1e
t + c2e

(2+
√
5)t + c3e

(2−
√
5)t.

27. The characteristic equation is 12r4 + 31r3 + 75r2 + 37r + 5 = 0. It can be
shown (with the aid of a mathematical software) that 12r4 + 31r3 + 75r2 + 37r +
5 = (3r + 1)(4r + 1)(r2 + 2r + 5). This implies that the roots are r = −1/3, −1/4,
and −1± 2i. The solution is y = c1e

−t/3 + c2e
−t/4 + c3e

−t cos 2t+ c4e
−t sin 2t.

29. The characteristic equation is r3 + r = 0 , with roots r = 0 , ± i . Hence the
general solution is y(t) = c1 + c2 cos t+ c3 sin t . Invoking the initial conditions, we
obtain the system of equations c1 + c2 = 0, c3 = 1, −c2 = 2, with solution c1 = 2 ,
c2 = −2 , c3 = 1 . Therefore the solution of the initial value problem is y(t) =
2− 2 cos t+ sin t , which oscillates about y = 2 as t→∞.
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30. The characteristic equation is r4 + 1 = 0 , with roots r = ±
√

2/2± i
√

2/2,

Hence the general solution is y(t) = c1e
√
2t/2 cos(

√
2t/2) + c2e

√
2t/2 sin(

√
2t/2) +

c3e
−
√
2t/2 cos(

√
2t/2) + c4e

−
√
2t/2 sin(

√
2t/2). Invoking the initial conditions, we

obtain that the solution of the initial value problem is y(t) = (−1/2)e
√
2t/2 sin(

√
2t/2) +

(1/2)e−
√
2t/2 sin(

√
2t/2), which oscillates with an exponentially growing amplitude

as t→∞.

31. The characteristic equation is r4 − 4r3 + r2 = 0 , with roots r = 0, 0, 2, 2.
Hence the general solution is y(t) = c1 + c2t+ c3e

2t + c4te
2t. Invoking the initial

conditions, we obtain that the solution of the initial value problem is y(t) = −3 + 2t,
which grows without bound as t→∞.

34. The characteristic equation is 4r3 + r + 5 = 0 , with roots r = −1, 1/2± i.
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Hence the general solution is y(t) = c1e
−t + c2e

t/2 cos t+ c3e
t/2 sin t. Invoking the

initial conditions, we obtain that the solution of the initial value problem is y(t) =
(2/13)e−t + et/2[(24/13) cos t+ (3/13) sin t], which oscillates with an exponentially
growing amplitude as t→∞.

37. The approach for solving the differential equation would normally yield y(t) =
c1 cos t+ c2 sin t+ c5e

t + c6e
−t as the solution. Since cosh t = (et + e−t)/2 and

sinh t = (et − e−t)/2, y(t) can be written as y(t) = c1 cos t+ c2 sin t+ c3 cosh t+
c4 sinh t, where c3 = c5 + c6 and c4 = c5 − c6. It is more convenient to use this
form because the initial conditions are given at t = 0, and the functions cosh t
and sinh t and all their derivatives are 0 or 1 at t = 0, so the algebra is simpli-
fied. If y(0) = 0, y′(0) = 0, y′′(0) = 1 and y′′′(0) = 1, then the resulting system of
equations is c1 + c3 = 0, c2 + c4 = 0, −c1 + c3 = 1, and −c2 + c4 = 1, which yields
immediately that c1 = −1/2, c3 = 1/2, c2 = −1/2 and c4 = 1/2, so the solution is
y(t) = −(1/2)(cos t+ sin t) + (1/2)(cosh t+ sinh t)

38.(a) Since p1(t) = 0, W = ce−
∫
0 dt = c.

(b) W (et, e−t, cos t, sin t) = −8.

(c) W (cosh t, sinh t, cos t, sin t) = 4.

39.(a) As in Section 3.7, the force that the spring designated by k1 exerts on mass
m1 is −3u1. By an analysis similar to that shown in Section 3.7, the middle spring
exerts a force of −2(u1 − u2) on mass m1 and a force of −2(u2 − u1) on mass
m2. Thus Newton’s law gives m1u

′′
1 = −3u1 − 2(u1 − u2) and m2u

′′
2 = −2(u2 − u1),

where u1 and u2 are measured from their equilibrium positions. Setting the masses
equal to 1 and rewriting each equation yields Eq.(i). In all cases the positive
direction is taken in the direction shown in Figure 4.2.4.

(b) Clearly, u2 = u′′1/2 + (5/2)u1, so by differentiating this twice and using the other
equation u′′2 + 2u2 = 2u1 we get that u′′′′1 /2 + (5/2)u′′1 + u′′1 + 5u1 = 2u1, which turns
into u′′′′1 + 7u′′1 + 6u1 = 0 after a multiplication by 2. The characteristic equation
is r4 + 7r2 + 6 = 0, or (r2 + 1)(r2 + 6) = 0. Thus the general solution of Eq.(ii) is
u1(t) = c1 cos t+ c2 sin t+ c3 cos

√
6t+ c4 sin

√
6t.
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(c) We see that u′′1 = 2u2 − 5u1, so u′′1(0) = 2 · 2− 5 · 1 = −1 and by differentiating
the previous equation, u′′′1 = 2u′2 − 5u′1, so u′′′1 (0) = 0. Substituting these initial
conditions into the previous general solution we obtain the solution u1(t) = cos t.
Also, 2u2 = u′′1 + 5u1 = 4 cos t so u2(t) = 2 cos t.

(d) As in part (c), u′′1 = 2u2 − 5u1, so u′′1(0) = 2 · 1− 5 · (−2) = 12 and u′′′1 = 2u′2 −
5u′1, so u′′′1 (0) = 0. Substituting these initial conditions into the general solution
we obtain the solution u1(t) = −2 cos

√
6t. Then 2u2 = u′′1 + 5u1 = 2 cos

√
6t so

u2(t) = cos
√

6t.

(e)

(a) Solutions from part (c) (b) Solutions from part (d)

4.3

1. First solve the homogeneous equation. The characteristic equation for this
is r3 − r2 − r + 1 = 0, the roots are r = −1, 1, 1, so yc(t) = c1e

−t + c2e
t + c3te

t.
Using the superposition principle, we can write a particular solution as the sum
of the particular solutions corresponding to the differential equations y′′′ − y′′ −
y′ + y = 2e−t and y′′′ − y′′ − y′ + y = 3. Our initial choice for Y1(t) is Ae−t, but
because this is a solution of the homogeneous equation we need Y1(t) = Ate−t. The
second equation gives us Y2(t) = B. The constants A and B can be determined by
substituting into the individual equations. We obtain A = 1/2 and B = 3. Thus
the general solution is y(t) = c1e

−t + c2e
t + c3te

t + te−t/2 + 3.

5. The characteristic equation is r4 − 4r2 = r2(r2 − 4) = 0, so yc(t) = c1 + c2t+
c3e
−2t + c4e

2t. For the particular solution corresponding to t2 we assume Y1(t) =
t2(At2 +Bt+ C) and for the particular solution corresponding to et we assume
Y2(t) = Det. The constants A, B, C, and D can be determined by substituting
into the individual equations. We obtain that the general solution is y(t) = c1 +
c2t+ c3e

−2t + c4e
2t − t4/48− t2/16− et/3.
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9. The characteristic equation for the related homogeneous differential equation
is r3 + 4r = 0 with roots r = 0, ±2i. Hence yc(t) = c1 + c2 cos 2t+ c3 sin 2t. The
initial choice for Y (t) is At+B, but because B is a solution of the homogeneous
equation we assume Y (t) = t(At+B). A and B are found by substituting this
into the differential equation, which gives us A = 1/8 and B = 0. Thus the general
solution is y = c1 + c2 cos 2t+ c3 sin 2t+ t2/8. Applying the initial conditions at
this point we obtain that y(0) = c1 + c2 = 0, y′(0) = 2c3 = 0 and y′′(0) = −4c2 +
1/4 = 1. This gives c2 = −3/16, c1 = 3/16 and c3 = 0. The solution is y = 3/16−
(3/16) cos 2t+ t2/8. We can see that for t = π, 2π, . . . the graph will be tangent to
t2/8 and for large t values the graph will be approximated by t2/8.

13. The characteristic equation for the homogeneous equation is r3 − 2r2 + r = 0,
with roots r = 0, 1, 1. Hence the complementary solution is yc(t) = c1 + c2e

t +
c3te

t. We consider the differential equations y′′′ − 2y′′ + y′ = t3 and y′′′ − 2y′′ +
y′ = 2et separately. Our initial choice for a particular solution Y1 of the first
equation is A0t

3 +A1t
2 +A2t+A3; but since a constant is a solution of the ho-

mogeneous equation we must multiply this by t. Thus Y1(t) = t(A0t
3 +A1t

2 +
A2t+A3). For the second equation we first choose Y2(t) = Bet, but since both
et and tet are solutions of the homogeneous equation, we multiply by t2 to ob-
tain Y2(t) = Bt2et. Then Y (t) = Y1(t) + Y2(t) by the superposition principle and
y(t) = yc(t) + Y (t).

17. The characteristic equation for the homogeneous equation is r4 − r3 − r2 + r =
r(r − 1)(r2 − 1) = 0, with roots r = 0, 1, 1, −1. Hence the complementary solu-
tion is yc(t) = c1 + c2e

−t + c3e
t + c4te

t. We consider the differential equations
y(4) − y′′′ − y′′ + y′ = t2 + 4 and y(4) − y′′′ − y′′ + y′ = t sin t separately. Our ini-
tial choice for a particular solution Y1 of the first equation is A0t

2 +A1t+A2;
but since a constant is a solution of the homogeneous equation we must multi-
ply this by t. Thus Y1(t) = t(A0t

2 +A1t+A2). For the second equation our ini-
tial choice Y2(t) = (B0t+B1) cos t+ (C0t+ C1) sin t does not need to be modified.
Thus Y (t) = Y1(t) + Y2(t) by the superposition principle and y(t) = yc(t) + Y (t).

20. We get (D − a)(D − b)f = (D − a)(Df − bf) = D2f − (a+ b)Df + abf and
(D − b)(D − a)f = (D − b)(Df − af) = D2f − (b+ a)Df + baf . Thus we find that
the given equation holds for any function f .
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22. (13) The equation in Problem 13 can be written as D(D − 1)2y = t3 + 2et.
Since D4 annihilates t3 and D − 1 annihilates 2et, we have D5(D − 1)3y = 0, which
corresponds to Eq.(ii) of Problem 21. The solution of this equation is y(t) =
A1t

4 +A2t
3 +A3t

2 +A4t+A5 + (B1t
2 +B2t+B3)et. Since A5 and (B2t+B3)et

are solutions of the homogeneous equation related to the original differential equa-
tion, they may be deleted and thus Y (t) = A1t

4 +A2t
3 +A3t

2 +A4t+B1t
2et.

22. (14) If y = te−t, then Dy = −te−t + e−t and D2y = te−t − 2e−t, which means
(D + 1)2y = (D2 + 2D + 1)y = 0 and thus (D + 1)2 annihilates te−t. Likewise,
D2 − 1 annihilates 2 cos t. Thus (D + 1)2(D2 + 1) annihilates the right side of the
differential equation.

22. (17) D3(D2 + 1)2 annihilates the right side of the differential equation.

4.4

1. The characteristic equation is r(r2 + 1) = 0 . Hence the homogeneous solution is
yc(t) = c1 + c2 cos t+ c3 sin t. The Wronskian is evaluated as W (1, cos t, sin t) = 1.
Now compute the three determinants

W1(t) =

∣∣∣∣∣∣
0 cos t sin t
0 − sin t cos t
1 − cos t − sin t

∣∣∣∣∣∣ = 1, W2(t) =

∣∣∣∣∣∣
1 0 sin t
0 0 cos t
0 1 − sin t

∣∣∣∣∣∣ = − cos t,

W3(t) =

∣∣∣∣∣∣
1 cos t 0
0 − sin t 0
0 − cos t 1

∣∣∣∣∣∣ = − sin t.

The solution of the system of Equations (11) is

u ′1(t) =
tan tW1(t)

W (t)
= tan t, u ′2(t) =

tan tW2(t)

W (t)
= − sin t,

u ′3(t) =
tan tW3(t)

W (t)
= − sin2 t/ cos t.

Hence u1(t) = − ln(cos t), u2(t) = cos t, u3(t) = sin t− ln(sec t+ tan t). The partic-
ular solution becomes Y (t) = − ln(cos t) + 1− sin t ln(sec t+ tan t), since sin2 t+
cos2 t = 1. The constant is a solution of the homogeneous equation, therefore the
general solution is

y(t) = c1 + c2 cos t+ c3 sin t− ln(cos t)− sin t ln(sec t+ tan t).

4. Similarly to Problem 1, the characteristic equation is r(r2 + 1) = 0 . Hence the
homogeneous solution is yc(t) = c1 + c2 cos t+ c3 sin t. The Wronskian is evaluated
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as W (1, cos t, sin t) = 1. Now compute the three determinants

W1(t) =

∣∣∣∣∣∣
0 cos t sin t
0 − sin t cos t
1 − cos t − sin t

∣∣∣∣∣∣ = 1, W2(t) =

∣∣∣∣∣∣
1 0 sin t
0 0 cos t
0 1 − sin t

∣∣∣∣∣∣ = − cos t,

W3(t) =

∣∣∣∣∣∣
1 cos t 0
0 − sin t 0
0 − cos t 1

∣∣∣∣∣∣ = − sin t.

The solution of the system of Equations (11) is

u ′1(t) =
sec tW1(t)

W (t)
= sec t, u ′2(t) =

sec tW2(t)

W (t)
= −1,

u ′3(t) =
sec tW3(t)

W (t)
= − sin t/ cos t.

Hence u1(t) = ln(sec t+ tan t), u2(t) = −t, u3(t) = ln(cos t). The particular solu-
tion becomes Y (t) = ln(sec t+ tan t)− t cos t+ sin t ln(cos t).

5. The characteristic equation is r3 − r2 + r − 1 = (r − 1)(r2 + 1) = 0 . Hence the
homogeneous solution is yc(t) = c1e

t + c2 cos t+ c3 sin t. The Wronskian is evalu-
ated as W (et, cos t, sin t) = 2et. (This also can be found by using Abel’s identity:
W (t) = ce−

∫
p1(t) dt = cet, where W (0) = 2, so c = 2 and again W (t) = 2et.) Now

compute the three determinants

W1(t) =

∣∣∣∣∣∣
0 cos t sin t
0 − sin t cos t
1 − cos t − sin t

∣∣∣∣∣∣ = 1, W2(t) =

∣∣∣∣∣∣
et 0 sin t
et 0 cos t
et 1 − sin t

∣∣∣∣∣∣ = et(sin t− cos t),

W3(t) =

∣∣∣∣∣∣
et cos t 0
et − sin t 0
et − cos t 1

∣∣∣∣∣∣ = −et(sin t+ cos t).

The solution of the system of equations (10) is

u ′1(t) =
e−t sin tW1(t)

W (t)
=
e−2t sin t

2
, u ′2(t) =

e−t sin tW2(t)

W (t)
=
e−t(sin2 t− sin t cos t)

2
,

u ′3(t) =
e−t sin tW3(t)

W (t)
= −e

−t(sin2 t+ sin t cos t)

2
.

Hence u1(t) = −(1/10)e−2t(cos t+ 2 sin t), u2(t) = −(1/4)e−t + (3/20)e−t cos 2t−
(1/20) sin 2t, u3(t) = e−t/4 + (1/20)e−t cos 2t+ (3/20)e−t sin 2t. Substitution into
Y = u1e

t + u2 cos t+ u3 sin t yields the desired particular solution.

7. Similarly to Problem 5, the characteristic equation for the differential equa-
tion is r3 − r2 + r − 1 = (r − 1)(r2 + 1) = 0 . Hence the homogeneous solution is
yc(t) = c1e

t + c2 cos t+ c3 sin t. The Wronskian is evaluated as W (et, cos t, sin t) =
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2et. (Also, as in Problem 5, this can be found by using Abel’s identity.) Now
compute the three determinants

W1(t) =

∣∣∣∣∣∣
0 cos t sin t
0 − sin t cos t
1 − cos t − sin t

∣∣∣∣∣∣ = 1, W2(t) =

∣∣∣∣∣∣
et 0 sin t
et 0 cos t
et 1 − sin t

∣∣∣∣∣∣ = et(sin t− cos t),

W3(t) =

∣∣∣∣∣∣
et cos t 0
et − sin t 0
et − cos t 1

∣∣∣∣∣∣ = −et(sin t+ cos t).

The solution of the system of equations (10) is

u ′1(t) =
sec tW1(t)

W (t)
=
e−t sec t

2
, u ′2(t) =

sec tW2(t)

W (t)
=

sec t(sin t− cos t)

2
,

u ′3(t) =
sec tW3(t)

W (t)
= − sec t(sin t+ cos t)

2
.

Hence u1(t) = (1/2)
∫ t
t0
e−s sec s ds, u2(t) = −t/2− ln(cos t)/2, and u3(t) = −t/2 +

ln(cos t)/2. Substitution into Y = u1e
t + u2 cos t+ u3 sin t yields the desired par-

ticular solution.

11. Since the differential equation is the same as in Problem 7. we may use the
complete solution from there, with t0 = 0. Thus y(0) = c1 + c2 = 2, y′(0) = c1 +
c3 − 1/2 + 1/2 = −1 and y′′(0) = c1 − c2 + 1/2− 1 + 1/2 = 1. A computer algebra
system may be used to find the respective derivatives. Note that the solution is
valid only for 0 ≤ t < π/2, where we see the vertical asymptote.

14. Using Problem 7 (or Problem 5) again, we get that Y = u1e
t + u2 cos t+

u3 sin t, where

u ′1(t) =
g(t)W1(t)

W (t)
=
g(t)e−t

2
, u ′2(t) =

g(t)W2(t)

W (t)
=
g(t)(sin t− cos t)

2
,

u ′3(t) =
g(t)W3(t)

W (t)
= −g(t)(sin t+ cos t)

2
.
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Thus we obtain that

Y (t) =
1

2
[et
∫ t

t0

e−sg(s) ds+ cos t

∫ t

t0

(sin s− cos s)g(s) ds

− sin t

∫ t

t0

(sin s+ cos s)g(s) ds].

We can move et, cos t and sin t inside the integrals and use trigonometric identities
to obtain the desired formula.

16. The characteristic equation for the differential equation is r3 − 3r2 + 3r − 1 =
(r − 1)3 = 0 . Hence the homogeneous solution is yc(t) = c1e

t + c2te
t + c3t

2et. The
Wronskian is evaluated as W (et, tet, t2et) = 2e3t. Now compute the three determi-
nants

W1(t) =

∣∣∣∣∣∣
0 tet t2et

0 et + tet 2tet + t2et

1 2et + tet 2et + 4tet + t2et

∣∣∣∣∣∣ = t2e2t,

W2(t) =

∣∣∣∣∣∣
et 0 t2et

et 0 2tet + t2et

et 1 2et + 4tet + t2et

∣∣∣∣∣∣ = −2te2t,

W3(t) =

∣∣∣∣∣∣
et tet 0
et et + tet 0
et 2et + tet 1

∣∣∣∣∣∣ = e2t.

The solution of the system of equations (10) is

u ′1(t) =
g(t)W1(t)

W (t)
=
g(t)t2e−t

2
, u ′2(t) =

g(t)W2(t)

W (t)
= −g(t)te−t,

u ′3(t) =
g(t)W3(t)

W (t)
=
g(t)e−t

2
.

Thus we obtain that

Y (t) = et
∫ t

t0

g(s)s2e−s

2
ds− tet

∫ t

t0

g(s)se−s ds+ t2et
∫ t

t0

g(s)e−s

2
ds =

=

∫ t

t0

g(s)et−s(s2 − 2ts+ t2)

2
ds =

∫ t

t0

g(s)et−s(s− t)2

2
ds.

If g(t) = t−2et, then this formula gives

Y (t) =

∫ t

t0

s−2eset−s(s− t)2

2
ds = et

∫ t

t0

s−2(s− t)2

2
ds = et

∫ t

t0

1

2
− t

s
+

t2

2s2
ds.

Note that terms involving t0 become part of the complementary solution, so we
obtain that Y (t) = −tet ln t only.
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