CHAPTER
 4

Higher Order Linear Equations

4.1
2. We will first rewrite the equation as $y^{\prime \prime \prime}+(\sin t / t) y^{\prime \prime}+(3 / t) y=\cos t / t$. Since the coefficient functions $p_{1}(t)=\sin t / t, p_{2}(t)=3 / t$ and $g(t)=\cos t / t$ are continuous for all $t \neq 0$, the solution is sure to exist in the intervals $(-\infty, 0)$ and $(0, \infty)$.
4. The coefficients are continuous everywhere, but the function $g(t)=\ln t$ is defined and continuous only on the interval $(0, \infty)$. Hence solutions are defined for positive reals.
8. We have

$$
W\left(f_{1}, f_{2}, f_{3}\right)=\left|\begin{array}{ccc}
2 t-3 & 2 t^{2}+1 & 3 t^{2}+t \\
2 & 4 t & 6 t+1 \\
0 & 4 & 6
\end{array}\right|=0
$$

for all t. Thus by the extension of Theorem 3.3.1 the given functions are linearly dependent. To find a linear relation we have $c_{1}(2 t-3)+c_{2}\left(2 t^{2}+1\right)+c_{3}\left(3 t^{2}+t\right)=$ $\left(2 c_{2}+3 c_{3}\right) t^{2}+\left(2 c_{1}+c_{3}\right) t+\left(-3 c_{1}+c_{2}\right)=0$, which is zero when the coefficients are zero. Solving, we find $c_{1}=1, c_{2}=3$ and $c_{3}=-2$. This implies that $(2 t-3)+$ $3\left(2 t^{2}+1\right)-2\left(3 t^{2}+t\right)=0$.
13. By direct substitution, for $y_{1}=e^{t}$ we get $y_{1}^{\prime \prime \prime}+2 y_{1}^{\prime \prime}-y_{1}^{\prime}-2 y_{1}=e^{t}+2 e^{t}-e^{t}-$ $2 e^{t}=0$, for $y_{2}=e^{-t}$ we get $y_{2}^{\prime \prime \prime}+2 y_{2}^{\prime \prime}-y_{2}^{\prime}-2 y_{2}=-e^{-t}+2 e^{-t}+e^{-t}-2 e^{-t}=0$ and for $y_{3}=e^{-2 t}$ we get $y_{3}^{\prime \prime \prime}+2 y_{3}^{\prime \prime}-y_{3}^{\prime}-2 y_{3}=-8 e^{-2 t}+8 e^{-2 t}+2 e^{-2 t}-2 e^{-2 t}=$

0 . Therefore, y_{1}, y_{2}, y_{3} are all solutions of the differential equation. We now compute their Wronskian. We have

$$
W\left(y_{1}, y_{2}, y_{3}\right)=\left|\begin{array}{ccc}
e^{t} & e^{-t} & e^{-2 t} \\
e^{t} & -e^{-t} & -2 e^{-2 t} \\
e^{t} & e^{-t} & 4 e^{-2 t}
\end{array}\right|=e^{-2 t}\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -2 \\
1 & 1 & 4
\end{array}\right|=-6 e^{-2 t}
$$

17. We note first that $\left(\sin ^{2} t\right)^{\prime}=2 \sin t \cos t=\sin 2 t$. Then
$W\left(5, \sin ^{2} t, \cos 2 t\right)=\left|\begin{array}{ccc}5 & \sin ^{2} t & \cos 2 t \\ 0 & \sin 2 t & -2 \sin 2 t \\ 0 & 2 \cos 2 t & -4 \cos 2 t\end{array}\right|=5(-4 \sin 2 t \cos 2 t+4 \cos 2 t \sin 2 t)=0$.
Also, $\sin ^{2} t=(1-\cos 2 t) / 2=(1 / 10) 5+(-1 / 2) \cos 2 t$ and hence $\sin ^{2} t$ is a linear combination of 5 and $\cos 2 t$. Thus the functions are linearly dependent and their Wronskian is zero.
19.(a) Note that $d^{k}\left(t^{n}\right) / d t^{k}=n(n-1) \ldots(n-k+1) t^{n-k}$, for $k=1,2, \ldots, n$. Thus $L\left[t^{n}\right]=a_{0} n!+a_{1}[n(n-1) \ldots 2] t+\ldots a_{n-1} n t^{n-1}+a_{n} t^{n}$.
(b) We have $d^{k}\left(e^{r t}\right) / d t^{k}=r^{k} e^{r t}$, for $k=0,1,2, \ldots$ Hence $L\left[e^{r t}\right]=a_{0} r^{n} e^{r t}+$ $a_{1} r^{n-1} e^{r t}+\ldots+a_{n-1} r e^{r t}+a_{n} e^{r t}=\left[a_{0} r^{n}+a_{1} r^{n-1}+\ldots+a_{n-1} r+a_{n}\right] e^{r t}$.
(c) Set $y=e^{r t}$, and substitute into the ODE. It follows that $r^{4}-5 r^{2}+4=0$, with $r= \pm 1, \pm 2$. Furthermore, $W\left(e^{t}, e^{-t}, e^{2 t}, e^{-2 t}\right)=72$.
18. After writing the equation in standard form, observe that $p_{1}(t)=2 / t$. Based on the results in Problem 20, we find that $W^{\prime}=(-2 / t) W$, and hence $W=c / t^{2}$.
25.(a) On the interval $(-1,0), f(t)=t^{2}|t|=-t^{3}=-g(t)$, and on the interval $(0,1)$, $f(t)=t^{2}|t|=t^{3}=g(t)$. This shows that on these intervals the functions are linearly dependent.
(b) On the interval $(-1,1)$ these two functions are linearly independent, because if $c_{1} f(t)+c_{2} g(t)=0$ for every t, then for $t=1 / 2$ we obtain $c_{1}+c_{2}=0$ and for $t=-1 / 2$ we get $c_{1}-c_{2}=0$, which implies that $c_{1}=c_{2}=0$.
(c) The Wronskian is

$$
W(f, g)(t)=\left|\begin{array}{cc}
t^{2}|t| & t^{3} \\
3 t|t| & 3 t^{2}
\end{array}\right|=3 t^{4}|t|-3 t^{4}|t|=0
$$

27. Differentiating e^{t} and substituting into the differential equation we verify that $y=e^{t}$ is a solution: $(2-t) e^{t}+(2 t-3) e^{t}-t e^{t}+e^{t}=0$. Now, as in Problem 26, we let $y=v(t) e^{t}$. Differentiating three times and substituting into the differential equation yields $(2-t) e^{t} v^{\prime \prime \prime}+(3-t) e^{t} v^{\prime \prime}=0$. Dividing by $(2-t) e^{t}$ and letting $w=$ $v^{\prime \prime}$ we obtain the first order separable equation $w^{\prime}=-(t-3) w /(t-2)=(-1+$ $1 /(t-2)) w$. Separating t and w, integrating, and then solving for w yields $w=$ $v^{\prime \prime}=c_{1}(t-2) e^{-t}$. Integrating this twice the gives $v=c_{1} t e^{-t}+c_{2} t+c_{3}$ so that
$y=v e^{t}=c_{1} t+c_{2} t e^{t}+c_{3} e^{t}$, which is the complete solution, since it contains the given $y_{1}(t)$ and three constants.

4.2

2. The magnitude of $-1+\sqrt{3} i$ is $R=\sqrt{4}=2$ and the polar angle is $2 \pi / 3$. Hence the polar form is given by $-1+\sqrt{3} i=2 e^{2 \pi / 3 i}$. The angle θ is only determined up to an additive integer multiple of 2π.
3. Writing $1-i$ in the form $R e^{i \theta}$, we have $R=\sqrt{2}$ and $\theta=-\pi / 4$. Thus $1-i=$ $\sqrt{2} e^{i(-\pi / 4+2 m \pi)}$ (where m is any integer), and hence $(1-i)^{1 / 2}=\sqrt[4]{2} e^{i(-\pi / 8+m \pi)}$. We obtain the two square roots by setting $m=0,1$. They are $\sqrt[4]{2} e^{-i \pi / 8}$ and $\sqrt[4]{2} e^{i 7 \pi / 8}$.
4. The characteristic equation is $r^{3}-3 r^{2}+3 r-1=(r-1)^{3}=0$. The roots are $r=1,1,1$. The roots are repeated, hence $y=c_{1} e^{t}+c_{2} t e^{t}+c_{3} t^{2} e^{t}$.
5. The characteristic equation is $r^{6}+1=0$. The roots are given by $r=(-1)^{1 / 6}$, that is, the six sixth roots of -1 . They are $e^{-\pi i / 6+m \pi i / 3}, m=0,1, \ldots, 5$. Explicitly, $r=(\sqrt{3}-i) / 2,(\sqrt{3}+i) / 2, i,-i,(-\sqrt{3}+i) / 2,(-\sqrt{3}-i) / 2$. Note that there are three pairs of conjugate roots. Thus $y=e^{\sqrt{3} t / 2}\left[c_{1} \cos (t / 2)+c_{2} \sin (t / 2)\right]+$ $c_{3} \cos t+c_{4} \sin t e^{-\sqrt{3} t / 2}\left[c_{5} \cos (t / 2)+c_{6} \sin (t / 2)\right]$.
6. The characteristic equation is $r^{3}-5 r^{2}+3 r+1=0$. Using the procedure suggested following Eq.(12) we try, since $a_{n}=a_{0}=1, r=1$ as a root and find that indeed it is. Factoring out $r-1$ we are then left with $r^{2}-4 r-1=0$, which has the roots $2 \pm \sqrt{5}$. Hence the general solution is $y=c_{1} e^{t}+c_{2} e^{(2+\sqrt{5}) t}+c_{3} e^{(2-\sqrt{5}) t}$.
7. The characteristic equation is $12 r^{4}+31 r^{3}+75 r^{2}+37 r+5=0$. It can be shown (with the aid of a mathematical software) that $12 r^{4}+31 r^{3}+75 r^{2}+37 r+$ $5=(3 r+1)(4 r+1)\left(r^{2}+2 r+5\right)$. This implies that the roots are $r=-1 / 3,-1 / 4$, and $-1 \pm 2 i$. The solution is $y=c_{1} e^{-t / 3}+c_{2} e^{-t / 4}+c_{3} e^{-t} \cos 2 t+c_{4} e^{-t} \sin 2 t$.
8. The characteristic equation is $r^{3}+r=0$, with roots $r=0, \pm i$. Hence the general solution is $y(t)=c_{1}+c_{2} \cos t+c_{3} \sin t$. Invoking the initial conditions, we obtain the system of equations $c_{1}+c_{2}=0, c_{3}=1,-c_{2}=2$, with solution $c_{1}=2$, $c_{2}=-2, c_{3}=1$. Therefore the solution of the initial value problem is $y(t)=$ $2-2 \cos t+\sin t$, which oscillates about $y=2$ as $t \rightarrow \infty$.

9. The characteristic equation is $r^{4}+1=0$, with roots $r= \pm \sqrt{2} / 2 \pm i \sqrt{2} / 2$, Hence the general solution is $y(t)=c_{1} e^{\sqrt{2} t / 2} \cos (\sqrt{2} t / 2)+c_{2} e^{\sqrt{2} t / 2} \sin (\sqrt{2} t / 2)+$ $c_{3} e^{-\sqrt{2} t / 2} \cos (\sqrt{2} t / 2)+c_{4} e^{-\sqrt{2} t / 2} \sin (\sqrt{2} t / 2)$. Invoking the initial conditions, we obtain that the solution of the initial value problem is $y(t)=(-1 / 2) e^{\sqrt{2} t / 2} \sin (\sqrt{2} t / 2)+$ $(1 / 2) e^{-\sqrt{2} t / 2} \sin (\sqrt{2} t / 2)$, which oscillates with an exponentially growing amplitude as $t \rightarrow \infty$.

10. The characteristic equation is $r^{4}-4 r^{3}+r^{2}=0$, with roots $r=0,0,2,2$. Hence the general solution is $y(t)=c_{1}+c_{2} t+c_{3} e^{2 t}+c_{4} t e^{2 t}$. Invoking the initial conditions, we obtain that the solution of the initial value problem is $y(t)=-3+2 t$, which grows without bound as $t \rightarrow \infty$.

11. The characteristic equation is $4 r^{3}+r+5=0$, with roots $r=-1,1 / 2 \pm i$.

Hence the general solution is $y(t)=c_{1} e^{-t}+c_{2} e^{t / 2} \cos t+c_{3} e^{t / 2} \sin t$. Invoking the initial conditions, we obtain that the solution of the initial value problem is $y(t)=$ $(2 / 13) e^{-t}+e^{t / 2}[(24 / 13) \cos t+(3 / 13) \sin t]$, which oscillates with an exponentially growing amplitude as $t \rightarrow \infty$.

37. The approach for solving the differential equation would normally yield $y(t)=$ $c_{1} \cos t+c_{2} \sin t+c_{5} e^{t}+c_{6} e^{-t}$ as the solution. Since $\cosh t=\left(e^{t}+e^{-t}\right) / 2$ and $\sinh t=\left(e^{t}-e^{-t}\right) / 2, y(t)$ can be written as $y(t)=c_{1} \cos t+c_{2} \sin t+c_{3} \cosh t+$ $c_{4} \sinh t$, where $c_{3}=c_{5}+c_{6}$ and $c_{4}=c_{5}-c_{6}$. It is more convenient to use this form because the initial conditions are given at $t=0$, and the functions $\cosh t$ and $\sinh t$ and all their derivatives are 0 or 1 at $t=0$, so the algebra is simplified. If $y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=1$ and $y^{\prime \prime \prime}(0)=1$, then the resulting system of equations is $c_{1}+c_{3}=0, c_{2}+c_{4}=0,-c_{1}+c_{3}=1$, and $-c_{2}+c_{4}=1$, which yields immediately that $c_{1}=-1 / 2, c_{3}=1 / 2, c_{2}=-1 / 2$ and $c_{4}=1 / 2$, so the solution is $y(t)=-(1 / 2)(\cos t+\sin t)+(1 / 2)(\cosh t+\sinh t)$
38. (a) Since $p_{1}(t)=0, W=c e^{-\int 0 d t}=c$.
(b) $W\left(e^{t}, e^{-t}, \cos t, \sin t\right)=-8$.
(c) $W(\cosh t, \sinh t, \cos t, \sin t)=4$.
39.(a) As in Section 3.7, the force that the spring designated by k_{1} exerts on mass m_{1} is $-3 u_{1}$. By an analysis similar to that shown in Section 3.7, the middle spring exerts a force of $-2\left(u_{1}-u_{2}\right)$ on mass m_{1} and a force of $-2\left(u_{2}-u_{1}\right)$ on mass m_{2}. Thus Newton's law gives $m_{1} u_{1}^{\prime \prime}=-3 u_{1}-2\left(u_{1}-u_{2}\right)$ and $m_{2} u_{2}^{\prime \prime}=-2\left(u_{2}-u_{1}\right)$, where u_{1} and u_{2} are measured from their equilibrium positions. Setting the masses equal to 1 and rewriting each equation yields Eq.(i). In all cases the positive direction is taken in the direction shown in Figure 4.2.4.
(b) Clearly, $u_{2}=u_{1}^{\prime \prime} / 2+(5 / 2) u_{1}$, so by differentiating this twice and using the other equation $u_{2}^{\prime \prime}+2 u_{2}=2 u_{1}$ we get that $u_{1}^{\prime \prime \prime \prime} / 2+(5 / 2) u_{1}^{\prime \prime}+u_{1}^{\prime \prime}+5 u_{1}=2 u_{1}$, which turns into $u_{1}^{\prime \prime \prime \prime}+7 u_{1}^{\prime \prime}+6 u_{1}=0$ after a multiplication by 2 . The characteristic equation is $r^{4}+7 r^{2}+6=0$, or $\left(r^{2}+1\right)\left(r^{2}+6\right)=0$. Thus the general solution of Eq.(ii) is $u_{1}(t)=c_{1} \cos t+c_{2} \sin t+c_{3} \cos \sqrt{6} t+c_{4} \sin \sqrt{6} t$.
(c) We see that $u_{1}^{\prime \prime}=2 u_{2}-5 u_{1}$, so $u_{1}^{\prime \prime}(0)=2 \cdot 2-5 \cdot 1=-1$ and by differentiating the previous equation, $u_{1}^{\prime \prime \prime}=2 u_{2}^{\prime}-5 u_{1}^{\prime}$, so $u_{1}^{\prime \prime \prime}(0)=0$. Substituting these initial conditions into the previous general solution we obtain the solution $u_{1}(t)=\cos t$. Also, $2 u_{2}=u_{1}^{\prime \prime}+5 u_{1}=4 \cos t$ so $u_{2}(t)=2 \cos t$.
(d) As in part (c), $u_{1}^{\prime \prime}=2 u_{2}-5 u_{1}$, so $u_{1}^{\prime \prime}(0)=2 \cdot 1-5 \cdot(-2)=12$ and $u_{1}^{\prime \prime \prime}=2 u_{2}^{\prime}-$ $5 u_{1}^{\prime}$, so $u_{1}^{\prime \prime \prime}(0)=0$. Substituting these initial conditions into the general solution we obtain the solution $u_{1}(t)=-2 \cos \sqrt{6} t$. Then $2 u_{2}=u_{1}^{\prime \prime}+5 u_{1}=2 \cos \sqrt{6} t$ so $u_{2}(t)=\cos \sqrt{6} t$.
(e)

1. First solve the homogeneous equation. The characteristic equation for this is $r^{3}-r^{2}-r+1=0$, the roots are $r=-1,1,1$, so $y_{c}(t)=c_{1} e^{-t}+c_{2} e^{t}+c_{3} t e^{t}$. Using the superposition principle, we can write a particular solution as the sum of the particular solutions corresponding to the differential equations $y^{\prime \prime \prime}-y^{\prime \prime}-$ $y^{\prime}+y=2 e^{-t}$ and $y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}+y=3$. Our initial choice for $Y_{1}(t)$ is $A e^{-t}$, but because this is a solution of the homogeneous equation we need $Y_{1}(t)=A t e^{-t}$. The second equation gives us $Y_{2}(t)=B$. The constants A and B can be determined by substituting into the individual equations. We obtain $A=1 / 2$ and $B=3$. Thus the general solution is $y(t)=c_{1} e^{-t}+c_{2} e^{t}+c_{3} t e^{t}+t e^{-t} / 2+3$.
2. The characteristic equation is $r^{4}-4 r^{2}=r^{2}\left(r^{2}-4\right)=0$, so $y_{c}(t)=c_{1}+c_{2} t+$ $c_{3} e^{-2 t}+c_{4} e^{2 t}$. For the particular solution corresponding to t^{2} we assume $Y_{1}(t)=$ $t^{2}\left(A t^{2}+B t+C\right)$ and for the particular solution corresponding to e^{t} we assume $Y_{2}(t)=D e^{t}$. The constants A, B, C, and D can be determined by substituting into the individual equations. We obtain that the general solution is $y(t)=c_{1}+$ $c_{2} t+c_{3} e^{-2 t}+c_{4} e^{2 t}-t^{4} / 48-t^{2} / 16-e^{t} / 3$.
3. The characteristic equation for the related homogeneous differential equation is $r^{3}+4 r=0$ with roots $r=0, \pm 2 i$. Hence $y_{c}(t)=c_{1}+c_{2} \cos 2 t+c_{3} \sin 2 t$. The initial choice for $Y(t)$ is $A t+B$, but because B is a solution of the homogeneous equation we assume $Y(t)=t(A t+B) . \quad A$ and B are found by substituting this into the differential equation, which gives us $A=1 / 8$ and $B=0$. Thus the general solution is $y=c_{1}+c_{2} \cos 2 t+c_{3} \sin 2 t+t^{2} / 8$. Applying the initial conditions at this point we obtain that $y(0)=c_{1}+c_{2}=0, y^{\prime}(0)=2 c_{3}=0$ and $y^{\prime \prime}(0)=-4 c_{2}+$ $1 / 4=1$. This gives $c_{2}=-3 / 16, c_{1}=3 / 16$ and $c_{3}=0$. The solution is $y=3 / 16-$ $(3 / 16) \cos 2 t+t^{2} / 8$. We can see that for $t=\pi, 2 \pi, \ldots$ the graph will be tangent to $t^{2} / 8$ and for large t values the graph will be approximated by $t^{2} / 8$.

4. The characteristic equation for the homogeneous equation is $r^{3}-2 r^{2}+r=0$, with roots $r=0,1,1$. Hence the complementary solution is $y_{c}(t)=c_{1}+c_{2} e^{t}+$ $c_{3} t e^{t}$. We consider the differential equations $y^{\prime \prime \prime}-2 y^{\prime \prime}+y^{\prime}=t^{3}$ and $y^{\prime \prime \prime}-2 y^{\prime \prime}+$ $y^{\prime}=2 e^{t}$ separately. Our initial choice for a particular solution Y_{1} of the first equation is $A_{0} t^{3}+A_{1} t^{2}+A_{2} t+A_{3}$; but since a constant is a solution of the homogeneous equation we must multiply this by t. Thus $Y_{1}(t)=t\left(A_{0} t^{3}+A_{1} t^{2}+\right.$ $A_{2} t+A_{3}$). For the second equation we first choose $Y_{2}(t)=B e^{t}$, but since both e^{t} and $t e^{t}$ are solutions of the homogeneous equation, we multiply by t^{2} to obtain $Y_{2}(t)=B t^{2} e^{t}$. Then $Y(t)=Y_{1}(t)+Y_{2}(t)$ by the superposition principle and $y(t)=y_{c}(t)+Y(t)$.
5. The characteristic equation for the homogeneous equation is $r^{4}-r^{3}-r^{2}+r=$ $r(r-1)\left(r^{2}-1\right)=0$, with roots $r=0,1,1,-1$. Hence the complementary solution is $y_{c}(t)=c_{1}+c_{2} e^{-t}+c_{3} e^{t}+c_{4} t e^{t}$. We consider the differential equations $y^{(4)}-y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}=t^{2}+4$ and $y^{(4)}-y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}=t \sin t$ separately. Our initial choice for a particular solution Y_{1} of the first equation is $A_{0} t^{2}+A_{1} t+A_{2}$; but since a constant is a solution of the homogeneous equation we must multiply this by t. Thus $Y_{1}(t)=t\left(A_{0} t^{2}+A_{1} t+A_{2}\right)$. For the second equation our initial choice $Y_{2}(t)=\left(B_{0} t+B_{1}\right) \cos t+\left(C_{0} t+C_{1}\right) \sin t$ does not need to be modified. Thus $Y(t)=Y_{1}(t)+Y_{2}(t)$ by the superposition principle and $y(t)=y_{c}(t)+Y(t)$.
6. We get $(D-a)(D-b) f=(D-a)(D f-b f)=D^{2} f-(a+b) D f+a b f$ and $(D-b)(D-a) f=(D-b)(D f-a f)=D^{2} f-(b+a) D f+b a f$. Thus we find that the given equation holds for any function f.
7. (13) The equation in Problem 13 can be written as $D(D-1)^{2} y=t^{3}+2 e^{t}$. Since D^{4} annihilates t^{3} and $D-1$ annihilates $2 e^{t}$, we have $D^{5}(D-1)^{3} y=0$, which corresponds to Eq.(ii) of Problem 21. The solution of this equation is $y(t)=$ $A_{1} t^{4}+A_{2} t^{3}+A_{3} t^{2}+A_{4} t+A_{5}+\left(B_{1} t^{2}+B_{2} t+B_{3}\right) e^{t}$. Since A_{5} and $\left(B_{2} t+B_{3}\right) e^{t}$ are solutions of the homogeneous equation related to the original differential equation, they may be deleted and thus $Y(t)=A_{1} t^{4}+A_{2} t^{3}+A_{3} t^{2}+A_{4} t+B_{1} t^{2} e^{t}$.
8. (14) If $y=t e^{-t}$, then $D y=-t e^{-t}+e^{-t}$ and $D^{2} y=t e^{-t}-2 e^{-t}$, which means $(D+1)^{2} y=\left(D^{2}+2 D+1\right) y=0$ and thus $(D+1)^{2}$ annihilates $t e^{-t}$. Likewise, $D^{2}-1$ annihilates $2 \cos t$. Thus $(D+1)^{2}\left(D^{2}+1\right)$ annihilates the right side of the differential equation.
9. (17) $D^{3}\left(D^{2}+1\right)^{2}$ annihilates the right side of the differential equation.
10. The characteristic equation is $r\left(r^{2}+1\right)=0$. Hence the homogeneous solution is $y_{c}(t)=c_{1}+c_{2} \cos t+c_{3} \sin t$. The Wronskian is evaluated as $W(1, \cos t, \sin t)=1$. Now compute the three determinants

$$
\begin{gathered}
W_{1}(t)=\left|\begin{array}{ccc}
0 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
1 & -\cos t & -\sin t
\end{array}\right|=1, \quad W_{2}(t)=\left|\begin{array}{ccc}
1 & 0 & \sin t \\
0 & 0 & \cos t \\
0 & 1 & -\sin t
\end{array}\right|=-\cos t \\
W_{3}(t)=\left|\begin{array}{ccc}
1 & \cos t & 0 \\
0 & -\sin t & 0 \\
0 & -\cos t & 1
\end{array}\right|=-\sin t
\end{gathered}
$$

The solution of the system of Equations (11) is

$$
\begin{gathered}
u_{1}^{\prime}(t)=\frac{\tan t W_{1}(t)}{W(t)}=\tan t, \quad u_{2}^{\prime}(t)=\frac{\tan t W_{2}(t)}{W(t)}=-\sin t \\
u_{3}^{\prime}(t)=\frac{\tan t W_{3}(t)}{W(t)}=-\sin ^{2} t / \cos t
\end{gathered}
$$

Hence $u_{1}(t)=-\ln (\cos t), u_{2}(t)=\cos t, u_{3}(t)=\sin t-\ln (\sec t+\tan t)$. The particular solution becomes $Y(t)=-\ln (\cos t)+1-\sin t \ln (\sec t+\tan t)$, $\operatorname{since} \sin ^{2} t+$ $\cos ^{2} t=1$. The constant is a solution of the homogeneous equation, therefore the general solution is

$$
y(t)=c_{1}+c_{2} \cos t+c_{3} \sin t-\ln (\cos t)-\sin t \ln (\sec t+\tan t)
$$

4. Similarly to Problem 1, the characteristic equation is $r\left(r^{2}+1\right)=0$. Hence the homogeneous solution is $y_{c}(t)=c_{1}+c_{2} \cos t+c_{3} \sin t$. The Wronskian is evaluated
as $W(1, \cos t, \sin t)=1$. Now compute the three determinants

$$
\begin{gathered}
W_{1}(t)=\left|\begin{array}{ccc}
0 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
1 & -\cos t & -\sin t
\end{array}\right|=1, \quad W_{2}(t)=\left|\begin{array}{ccc}
1 & 0 & \sin t \\
0 & 0 & \cos t \\
0 & 1 & -\sin t
\end{array}\right|=-\cos t \\
W_{3}(t)=\left|\begin{array}{ccc}
1 & \cos t & 0 \\
0 & -\sin t & 0 \\
0 & -\cos t & 1
\end{array}\right|=-\sin t
\end{gathered}
$$

The solution of the system of Equations (11) is

$$
\begin{gathered}
u_{1}^{\prime}(t)=\frac{\sec t W_{1}(t)}{W(t)}=\sec t, \quad u_{2}^{\prime}(t)=\frac{\sec t W_{2}(t)}{W(t)}=-1 \\
u_{3}^{\prime}(t)=\frac{\sec t W_{3}(t)}{W(t)}=-\sin t / \cos t
\end{gathered}
$$

Hence $u_{1}(t)=\ln (\sec t+\tan t), u_{2}(t)=-t, u_{3}(t)=\ln (\cos t)$. The particular solution becomes $Y(t)=\ln (\sec t+\tan t)-t \cos t+\sin t \ln (\cos t)$.
5. The characteristic equation is $r^{3}-r^{2}+r-1=(r-1)\left(r^{2}+1\right)=0$. Hence the homogeneous solution is $y_{c}(t)=c_{1} e^{t}+c_{2} \cos t+c_{3} \sin t$. The Wronskian is evaluated as $W\left(e^{t}, \cos t, \sin t\right)=2 e^{t}$. (This also can be found by using Abel's identity: $W(t)=c e^{-\int p_{1}(t) d t}=c e^{t}$, where $W(0)=2$, so $c=2$ and again $W(t)=2 e^{t}$.) Now compute the three determinants

$$
\begin{gathered}
W_{1}(t)=\left|\begin{array}{ccc}
0 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
1 & -\cos t & -\sin t
\end{array}\right|=1, \quad W_{2}(t)=\left|\begin{array}{ccc}
e^{t} & 0 & \sin t \\
e^{t} & 0 & \cos t \\
e^{t} & 1 & -\sin t
\end{array}\right|=e^{t}(\sin t-\cos t) \\
W_{3}(t)=\left|\begin{array}{ccc}
e^{t} & \cos t & 0 \\
e^{t} & -\sin t & 0 \\
e^{t} & -\cos t & 1
\end{array}\right|=-e^{t}(\sin t+\cos t)
\end{gathered}
$$

The solution of the system of equations (10) is

$$
\begin{gathered}
u_{1}^{\prime}(t)=\frac{e^{-t} \sin t W_{1}(t)}{W(t)}=\frac{e^{-2 t} \sin t}{2}, u_{2}^{\prime}(t)=\frac{e^{-t} \sin t W_{2}(t)}{W(t)}=\frac{e^{-t}\left(\sin ^{2} t-\sin t \cos t\right)}{2} \\
u_{3}^{\prime}(t)=\frac{e^{-t} \sin t W_{3}(t)}{W(t)}=-\frac{e^{-t}\left(\sin ^{2} t+\sin t \cos t\right)}{2}
\end{gathered}
$$

Hence $u_{1}(t)=-(1 / 10) e^{-2 t}(\cos t+2 \sin t), u_{2}(t)=-(1 / 4) e^{-t}+(3 / 20) e^{-t} \cos 2 t-$ $(1 / 20) \sin 2 t, u_{3}(t)=e^{-t} / 4+(1 / 20) e^{-t} \cos 2 t+(3 / 20) e^{-t} \sin 2 t$. Substitution into $Y=u_{1} e^{t}+u_{2} \cos t+u_{3} \sin t$ yields the desired particular solution.
7. Similarly to Problem 5, the characteristic equation for the differential equation is $r^{3}-r^{2}+r-1=(r-1)\left(r^{2}+1\right)=0$. Hence the homogeneous solution is $y_{c}(t)=c_{1} e^{t}+c_{2} \cos t+c_{3} \sin t$. The Wronskian is evaluated as $W\left(e^{t}, \cos t, \sin t\right)=$
$2 e^{t}$. (Also, as in Problem 5, this can be found by using Abel's identity.) Now compute the three determinants

$$
\begin{gathered}
W_{1}(t)=\left|\begin{array}{ccc}
0 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
1 & -\cos t & -\sin t
\end{array}\right|=1, \quad W_{2}(t)=\left|\begin{array}{ccc}
e^{t} & 0 & \sin t \\
e^{t} & 0 & \cos t \\
e^{t} & 1 & -\sin t
\end{array}\right|=e^{t}(\sin t-\cos t) \\
W_{3}(t)=\left|\begin{array}{ccc}
e^{t} & \cos t & 0 \\
e^{t} & -\sin t & 0 \\
e^{t} & -\cos t & 1
\end{array}\right|=-e^{t}(\sin t+\cos t)
\end{gathered}
$$

The solution of the system of equations (10) is

$$
\begin{gathered}
u_{1}^{\prime}(t)=\frac{\sec t W_{1}(t)}{W(t)}=\frac{e^{-t} \sec t}{2}, \quad u_{2}^{\prime}(t)=\frac{\sec t W_{2}(t)}{W(t)}=\frac{\sec t(\sin t-\cos t)}{2} \\
u_{3}^{\prime}(t)=\frac{\sec t W_{3}(t)}{W(t)}=-\frac{\sec t(\sin t+\cos t)}{2}
\end{gathered}
$$

Hence $u_{1}(t)=(1 / 2) \int_{t_{0}}^{t} e^{-s} \sec s d s, u_{2}(t)=-t / 2-\ln (\cos t) / 2$, and $u_{3}(t)=-t / 2+$ $\ln (\cos t) / 2$. Substitution into $Y=u_{1} e^{t}+u_{2} \cos t+u_{3} \sin t$ yields the desired particular solution.
11. Since the differential equation is the same as in Problem 7. we may use the complete solution from there, with $t_{0}=0$. Thus $y(0)=c_{1}+c_{2}=2, y^{\prime}(0)=c_{1}+$ $c_{3}-1 / 2+1 / 2=-1$ and $y^{\prime \prime}(0)=c_{1}-c_{2}+1 / 2-1+1 / 2=1$. A computer algebra system may be used to find the respective derivatives. Note that the solution is valid only for $0 \leq t<\pi / 2$, where we see the vertical asymptote.

14. Using Problem 7 (or Problem 5) again, we get that $Y=u_{1} e^{t}+u_{2} \cos t+$ $u_{3} \sin t$, where

$$
\begin{gathered}
u_{1}^{\prime}(t)=\frac{g(t) W_{1}(t)}{W(t)}=\frac{g(t) e^{-t}}{2}, \quad u_{2}^{\prime}(t)=\frac{g(t) W_{2}(t)}{W(t)}=\frac{g(t)(\sin t-\cos t)}{2} \\
u_{3}^{\prime}(t)=\frac{g(t) W_{3}(t)}{W(t)}=-\frac{g(t)(\sin t+\cos t)}{2}
\end{gathered}
$$

Thus we obtain that

$$
\begin{gathered}
Y(t)=\frac{1}{2}\left[e^{t} \int_{t_{0}}^{t} e^{-s} g(s) d s+\cos t \int_{t_{0}}^{t}(\sin s-\cos s) g(s) d s\right. \\
\left.-\sin t \int_{t_{0}}^{t}(\sin s+\cos s) g(s) d s\right]
\end{gathered}
$$

We can move $e^{t}, \cos t$ and $\sin t$ inside the integrals and use trigonometric identities to obtain the desired formula.
16. The characteristic equation for the differential equation is $r^{3}-3 r^{2}+3 r-1=$ $(r-1)^{3}=0$. Hence the homogeneous solution is $y_{c}(t)=c_{1} e^{t}+c_{2} t e^{t}+c_{3} t^{2} e^{t}$. The Wronskian is evaluated as $W\left(e^{t}, t e^{t}, t^{2} e^{t}\right)=2 e^{3 t}$. Now compute the three determinants

$$
\begin{gathered}
W_{1}(t)=\left|\begin{array}{ccc}
0 & t e^{t} & t^{2} e^{t} \\
0 & e^{t}+t e^{t} & 2 t e^{t}+t^{2} e^{t} \\
1 & 2 e^{t}+t e^{t} & 2 e^{t}+4 t e^{t}+t^{2} e^{t}
\end{array}\right|=t^{2} e^{2 t}, \\
W_{2}(t)=\left|\begin{array}{ccc}
e^{t} & 0 & t^{2} e^{t} \\
e^{t} & 0 & 2 t e^{t}+t^{2} e^{t} \\
e^{t} & 1 & 2 e^{t}+4 t e^{t}+t^{2} e^{t}
\end{array}\right|=-2 t e^{2 t}, \\
W_{3}(t)=\left|\begin{array}{ccc}
e^{t} & t e^{t} & 0 \\
e^{t} & e^{t}+t e^{t} & 0 \\
e^{t} & 2 e^{t}+t e^{t} & 1
\end{array}\right|=e^{2 t}
\end{gathered}
$$

The solution of the system of equations (10) is

$$
\begin{gathered}
u_{1}^{\prime}(t)=\frac{g(t) W_{1}(t)}{W(t)}=\frac{g(t) t^{2} e^{-t}}{2}, \quad u_{2}^{\prime}(t)=\frac{g(t) W_{2}(t)}{W(t)}=-g(t) t e^{-t} \\
u_{3}^{\prime}(t)=\frac{g(t) W_{3}(t)}{W(t)}=\frac{g(t) e^{-t}}{2}
\end{gathered}
$$

Thus we obtain that

$$
\begin{aligned}
Y(t) & =e^{t} \int_{t_{0}}^{t} \frac{g(s) s^{2} e^{-s}}{2} d s-t e^{t} \int_{t_{0}}^{t} g(s) s e^{-s} d s+t^{2} e^{t} \int_{t_{0}}^{t} \frac{g(s) e^{-s}}{2} d s= \\
& =\int_{t_{0}}^{t} \frac{g(s) e^{t-s}\left(s^{2}-2 t s+t^{2}\right)}{2} d s=\int_{t_{0}}^{t} \frac{g(s) e^{t-s}(s-t)^{2}}{2} d s
\end{aligned}
$$

If $g(t)=t^{-2} e^{t}$, then this formula gives

$$
Y(t)=\int_{t_{0}}^{t} \frac{s^{-2} e^{s} e^{t-s}(s-t)^{2}}{2} d s=e^{t} \int_{t_{0}}^{t} \frac{s^{-2}(s-t)^{2}}{2} d s=e^{t} \int_{t_{0}}^{t} \frac{1}{2}-\frac{t}{s}+\frac{t^{2}}{2 s^{2}} d s
$$

Note that terms involving t_{0} become part of the complementary solution, so we obtain that $Y(t)=-t e^{t} \ln t$ only.

