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C H A P T E R

5

Series Solutions of Second Order

Linear Equations

5.1

2. Use the ratio test:

lim
n→∞

∣∣(n+ 1)xn+1/2n+1
∣∣

|nxn/2n|
= lim
n→∞

n+ 1

n

1

2
|x| = |x|

2
.

Therefore the series converges absolutely for |x| < 2. For x = 2 and x = −2 the nth

term does not approach zero as n→∞ so the series diverge. Hence the radius of
convergence is ρ = 2.

5. Use the ratio test :

lim
n→∞

∣∣(2x+ 1)n+1/(n+ 1)2
∣∣

|(2x+ 1)n/n2|
= lim

n→∞

n2

(n+ 1)2
|2x+ 1| = |2x+ 1|.

Therefore the series converges absolutely for |2x+ 1| < 1, or |x+ 1/2| < 1/2 . The
radius of convergence is ρ = 1/2 . At x = 0 and x = −1 , the series also converges
absolutely.

9. For this problem f(x) = sinx, so f ′(x) = cosx, f ′′(x) = − sinx, f ′′′(x) = − cosx,
f ′′′′(x) = sinx . . ., and thus f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1 . . .. The
even terms in the series vanish and the odd terms alternate in sign. We obtain that
sinx =

∑∞
n=0(−1)nx2n+1/(2n+ 1)!. Also,

lim
n→∞

∣∣(−1)n+1x2n+3/(2n+ 3)!
∣∣

|(−1)nx2n+1/(2n+ 1)!|
= lim

n→∞
x2

1

(2n+ 3)(2n+ 2)
= 0,
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so the series converges for all x and ρ =∞.

12. For this problem f(x) = x2. Hence f ′(x) = 2x, f ′′(x) = 2, and f (n)(x) = 0 for
n > 2. Then f(−1) = 1, f ′(−1) = −2, f ′′(−1) = 2 and x2 = 1− 2(x+ 1) + 2(x+
1)2/2! = 1− 2(x+ 1) + (x+ 1)2. Since the series terminates after a finite number
of terms, it converges for all x. Thus ρ =∞.

13. For this problem f(x) = lnx. Hence f ′(x) = 1/x, f ′′(x) = −1/x2, f ′′(x) = 1 ·
2/x3 . . ., and f (n)(x) = (−1)n+1(n− 1)!/xn. Then f(1) = 0, f ′(1) = 1, f ′′(1) = −1,
f ′′′(1) = 1 · 2 . . ., f (n)(1) = (−1)n+1(n− 1)!. The Taylor series is

lnx = (x− 1)− (x− 1)2/2 + (x− 1)3/3− . . . =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

It follows from the ratio test that the series converges absolutely for |x− 1| < 1.
Thus ρ = 1. The series diverges at x = 0 and converges at x = 2.

18. We have y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . ., so y′ = a1 + 2a2x+ 3a3x
2 +

. . .+ (n+ 1)an+1x
n + . . ., and then we get y′′ = 2a2 + 3 · 2a3x+ 4 · 3a4x2 + . . .+

(n+ 2)(n+ 1)an+2x
n + . . .. If y′′ = y, we equate coefficients of like powers of x to

obtain 2a2 = a0, 3 · 2a3 = a1, 4 · 3a4 = a2, . . . (n+ 2)(n+ 1)an+2 = an. Thus a2 =
a0/2, a3 = a1/6, a4 = a2/(4 · 3) = a0/4!, . . . an+2 = an/((n+ 2)(n+ 1)). These yield
the desired results for n = 0, 1, 2, 3, . . .

19. Set m = n− 1 on the right hand side of the equation. Then n = m+ 1 and
when n = 1, m = 0. Thus the right hand side becomes

∑∞
m=0 am(x− 1)m+1, which

is the same as the left hand side when m is replaced by n.

23. Multiplying each term of the first series by x yields

x

∞∑
n=1

nanx
n−1 =

∞∑
n=1

nanx
n =

∞∑
n=0

nanx
n,

where the last equality comes from nan = 0 for n = 0. Changing the index from k
to n in the second series yields

∞∑
n=0

nanx
n +

∞∑
n=0

anx
n =

∞∑
n=0

(n+ 1)anx
n.

25.
∞∑
m=2

m(m− 1)amx
m−2 + x

∞∑
k=1

kakx
k−1 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
k=1

kakx
k =

∞∑
n=0

[(n+ 2)(n+ 1)an+2 + nan]xn.

In the first case we have let n = m− 2 in the first summation and multiplied each
term of the second summation by x. In the second case we have let n = k and
noted that for n = 0, nan = 0.
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28. If we shift the index of summation in the first sum by letting m = n− 1, we
have

∞∑
n=1

nanx
n−1 =

∞∑
m=0

(m+ 1)am+1x
m.

Substituting this into the given equation and letting m = n again, we obtain

∞∑
n=0

(n+ 1)an+1x
n + 2

∞∑
n=0

anx
n = 0, or

∞∑
n=0

[(n+ 1)an+1 + 2an]xn = 0.

Hence an+1 = −2an/(n+ 1) for n = 0, 1, 2, 3, .... Thus a1 = −2a0, a2 = −2a1/2 =
22a0/2, a3 = −2a2/3 = −23a0/2 · 3 = −23a0/3!... and an = (−1)n2na0/n!. Notice
that for n = 0 this formula reduces to a0, so we can write

∞∑
n=0

anx
n =

∞∑
n=0

(−1)n2na0x
n/n! = a0

∞∑
n=0

(−2x)n/n! = a0e
−2x.

5.2

2.(a) y =
∑∞
n=0 anx

n; y′ =
∑∞
n=1 nanx

n−1 and since we must multiply y′ by x in
the D.E. we do not shift the index; and y′′ =

∑∞
n=2 n(n− 1)anx

n−2 =
∑∞
n=0(n+

2)(n+ 1)an+2x
n. Substituting in the D.E., we obtain

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0.

In order to have the starting point the same in all three summations, we let n = 0
in the first and third terms to obtain the following:

(2 · 1a2 − a0)x0 +

∞∑
n=1

[(n+ 2)(n+ 1)an+2 − (n+ 1)an]xn = 0.

Thus an+2 = an/(n+ 2) for n = 1, 2, 3, . . . Note that the recurrence relation is also
correct for n = 0.

(b) From the recurrence relation we have a2 = a0/2, a4 = a2/4 = a0/2 · 4, a6 =
a4/6 = a0/2 · 4 · 6, so y1 = 1 + x2/2 + x4/2 · 4 + x6/2 · 4 · 6 + . . ., and a3 = a1/3,
a5 = a3/5 = a1/3 · 5, a7 = a5/7 = a1/3 · 5 · 7, so y2 = x+ x3/3 + x5/3 · 5 + x7/3 ·
5 · 7 + . . .

(c) W (y1, y2)(0) =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 and thus y1, y2 form a fundamental set of solutions.

(d) From part (b) we see the even coefficients can be written as a2m = a0/2
mm!. For

the odd coefficients notice that a3 = 2a1/(2 · 3) = 2a1/3!, that a5 = 2 · 4a1/(2 · 3 ·
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4 · 5) = 22 · 2a1/5!, and that a7 = 2 · 4 · 6a1/(2 · 3 · 4 · 5 · 6 · 7) = 23 · 3!a1/7!. Like-
wise a9 = a7/9 = 23 · 3!a1/(7!)9 = 23 · 3!8a1/9! = 24 · 4!a1/9!. Continuing, we have
a2m+1 = 2mm!a1/(2m+ 1)!. Thus

y = a0

∞∑
m=0

x2m

2mm!
+ a1

∞∑
m=0

2mm!x2m+1

(2m+ 1)!
.

3.(a)

y =

∞∑
n=0

an(x− 1)n; y′ =

∞∑
n=1

nan(x− 1)n−1 =

∞∑
n=0

(n+ 1)an+1(x− 1)n,

and

y′′ =

∞∑
n=2

n(n− 1)an(x− 1)n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 1)n.

Substituting in the differential equation and setting x = 1 + (x− 1), we obtain

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 1)n −
∞∑
n=0

(n+ 1)an+1(x− 1)n −
∞∑
n=1

nan(x− 1)n

−
∞∑
n=0

an(x− 1)n = 0,

where the third sum comes from

−(x− 1)y′ = −
∞∑
n=0

(n+ 1)an+1(x− 1)n+1 = −
∞∑
n=1

nan(x− 1)n.

Letting n = 0 in the first, second and fourth sums we obtain

(2 · 1 · a2 − 1 · a1 − a0)(x− 1)0+

+

∞∑
n=1

[(n+ 2)(n+ 1)an+2 − (n+ 1)an+1 − (n+ 1)an] (x− 1)n = 0.

Setting the terms in the square brackets equal to zero and dividing by (n+ 1) gives
us that (n+ 2)an+2 − an+1 − an = 0 for n = 1, 2, 3, . . . (which also holds for n = 0).
This recurrence relation can be used to solve for a2 in terms of a0 and a1, then for
a3 in terms of a1 and a2 and so on.

(b) In many cases it is easier to first take a0 = 0 and generate one solution and
then take a1 = 0 and generate a second solution. Thus, choosing a0 = 0, we
find that a2 = a1/2, a3 = (a2 + a1)/3 = a1/2, a4 = (a3 + a2)/4 = a1/4, a5 = (a4 +
a3)/5 = 3a1/20, . . .. This yields the solution y2(x) = (x− 1) + (x− 1)2/2 + (x−
1)3/2 + (x− 1)4/4 + . . .. The second solution may be obtained by choosing a1 =
0. Then a2 = a0/2, a3 = (a2 + a1)/3 = a0/6, a4 = (a3 + a2)/4 = a0/6, a5 = (a4 +
a3)/5 = a0/15, . . .. This yields the solution y1(x) = 1 + (x− 1)2/2 + (x− 1)3/6 +
(x− 1)4/6 + (x− 1)5/15 + . . ..
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(c) W (y1, y2)(1) =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1 and thus y1 and y2 form a fundamental set of so-

lutions.

(d) A general term is not easily found in this case.

5.

y =

∞∑
n=0

anx
n; y′ =

∞∑
n=1

nanx
n−1; y′′ =

∞∑
n=2

n(n− 1)anx
n−2.

Substituting in the differential equation and shifting the index in both summations
for y′′ gives

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

(n+ 1)nan+1x
n +

∞∑
n=0

anx
n = (2 · 1 · a2 + a0)x0

+

∞∑
n=1

[(n+ 2)(n+ 1)an+2 − (n+ 1)nan+1 + an]xn = 0.

Thus a2 = −a0/2 and an+2 = nan+1/(n+ 2)− an/(n+ 2)(n+ 1), n = 1, 2, . . .. Choos-
ing a0 = 0 yields a2 = 0, a3 = −a1/6, a4 = 2a3/4 = −a1/12, a5 = 3a4/5− a3/20 =
−a1/24, . . ., and hence y2(x) = a1(x− x3/6− x4/12− x5/24 + . . .). A second lin-
early independent solution is obtained by choosing a1 = 0. Then a2 = −a0/2,
a3 = a2/3 = −a0/6, a4 = 2a3/4− a2/12 = −a0/24, . . ., which gives y1(x) = a0(1−
x2/2− x3/6− x4/24 + . . .).

8. If y =
∑∞
n=0 an(x− 1)n, then

xy = [1 + (x− 1)]y =

∞∑
n=0

an(x− 1)n +

∞∑
n=0

an(x− 1)n+1,

y′ =

∞∑
n=1

nan(x− 1)n−1, and

xy′′ = [1 + (x− 1)]y′′ =

∞∑
n=2

n(n− 1)an(x− 1)n−2 +

∞∑
n=2

n(n− 1)an(x− 1)n−1.

14. We need to rewrite x+ 1 as 3 + (x− 2) in order to multiply x+ 1 times y′ as
a power series about x0 = 2.

16.(a) From Problem 6 we have y(x) = c1(1− x2 + x4/6 + ...) + c2(x− x3/4 + 7x5/160 +
...). Now y(0) = c1 = −1 and y′(0) = c2 = 3 and thus

y(x) = −1 + x2 − 1

6
x4 + ...+ 3x− 3

4
x3 + ...

= −1 + 3x+ x2 − 3

4
x3 − 1

6
x4 + ....
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(b)

(c) It appears that f is a reasonable approximation for |x| < 0.7. In fact, the
magnitude of the difference in the two graphs is 0.02 for |x| = 0.6 and 0.04 for
|x| = 0.7.

19. Letting t = x− 1 yields (x− 1)2 = t2 and (x2 − 1) = t2 + 2t. Now let u(t) =
y(t+ 1) and hence u′ = y′ and u′′ = y′′. Thus the differential equation transforms
into u′′(t) + t2u′(t) + (t2 + 2t)u(t) = 0. Assuming that u(t) =

∑∞
n=0 ant

n, we have
u′(t) =

∑∞
n=1 nant

n−1 and u′′(t) =
∑∞
n=2 n(n− 1)ant

n−2. Substituting in the dif-
ferential equation and shifting indices yields

∞∑
n=0

(n+ 2)(n+ 1)an+2t
n +

∞∑
n=2

(n− 1)an−1t
n +

∞∑
n=2

an−2t
n +

∞∑
n=1

2an−1t
n = 0,

2 · 1 · a2t0 + (3 · 2 · a3 + 2 · a0)t1+

+

∞∑
n=2

[(n+ 2)(n+ 1)an+2 + (n+ 1)an−1 + an−2] tn = 0.

It follows that a2 = 0, a3 = −a0/3, and an+2 = −an−1/(n+ 2)− an−2/(n+ 2)(n+
1), n = 2, 3, 4, . . .. We obtain one solution by choosing a1 = 0. Then a4 = −a0/12,
a5 = −a2/5− a1/20 = 0, a6 = −a3/6− a2/30 = a0/18, . . .. Thus one solution is
u1(t) = a0(1− t3/3− t4/12 + t6/18 + . . .), so y1(x) = u1(x− 1) = 1− (x− 1)3/3−
(x− 1)4/12 + (x− 1)6/18 + . . .. We obtain a second solution by choosing a0 = 0.
Then a4 = −a1/4, a5 = −a2/5− a1/20 = −a1/20, a6 = −a3/6− a2/30 = 0, a7 =
−a4/7− a3/42 = a1/28, . . .. Thus u2(t) = t− t4/4− t5/20 + t7/28 + . . ., or

y2(x) = u2(x− 1) = (x− 1)− (x− 1)4/4− (x− 1)5/20 + (x− 1)7/28 + . . . .

The Taylor series for x2 − 1 about x = 1 may be obtained by writing x = 1 + (x− 1)
so x2 = 1 + 2(x− 1) + (x− 1)2 and x2 − 1 = 2(x− 1) + (x− 1)2. The differen-
tial equation now appears as y′′ + (x− 1)2y′ +

[
(x− 1)2 + 2(x− 1)

]
y = 0, which

is identical to the transformed equation with t = x− 1.

22.(a) Clearly, (sinx)′ = cosx =
√

1− sin2 x (for −π/2 ≤ x ≤ π/2) and sin 0 = 0.
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(b) y = a0 + a1x+ a2x
2 + ... , y2 = a20 + 2a0a1x+

(
2a0a2 + a21

)
x2 + ... , y′ = a1 +

2a2x+ 3a3x
2 + ... , and (y′)2 = a21 + 4a1a2x+

(
6a1a3 + 4a22

)
x2 + .... Substituting

these into (y′)2 = 1− y2 and collecting coefficients of like powers of x yields(
a21 + a20 − 1

)
+ (4a1a2 + 2a0a1)x+

(
6a1a3 + 4a22 + 2a0a2 + a21

)
x2 + ... = 0.

As in the earlier problems, each coefficient must be zero. The I.C. y(0) = 0 requires
that a0 = 0, and thus a21 + a20− 1 = 0 gives a21 = 1. However, the D.E. indicates
that y′ is always positive, so y′(0) = a1 > 0 implies a1 = 1. Then 4a1a2 + 2a0a1 = 0
implies that a2 = 0; and 6a1a3 + 4a22 + 2a0a2 + a21 = 6a1a3 + a21 = 0 implies that
a3 = −1/6. Thus y = x− x3/3! + ... , which are the first two terms of the Taylor
series or sinx.

23. With the given initial conditions, Problem 2 tells us that the series solution is
given by

y(x) = 1 +
1

2
x2 +

1

22 2!
x4 +

1

233!
x6 +

1

244!
x8 + . . . .

26. With the given initial conditions, Problem 10 tells us that the series solution is
given by

y(x) = x− x3

12
− x5

240
− x7

2240
− x9

16128
− . . . .
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5.3

1. The differential equation can be solved for y′′ to yield y′′ = −xy′ − y. If y = φ(x)
is a solution, then φ′′(x) = −xφ′(x)− φ(x) and thus setting x = 0 we obtain that
φ′′(0) = −0− 1 = −1. Differentiating the equation for y′′ yields y′′′ = −xy′′ − 2y′

and hence setting y = φ(x) again yields φ′′′(0) = −0− 0 = 0. In a similar fash-
ion y(4) = −xy′′′ − 3y′′ and thus φ(4)(0) = −0− 3(−1) = 3. The process can be
continued to calculate higher derivatives of φ(x).

3. Let y = φ(x) be a solution of the initial value problem. First write

y ′′ = −1 + x

x2
y ′ − 3 ln x

x2
y .

Differentiating twice,

y ′′′ =
−1

x3
[
(x+ x2)y ′′ + (3x ln x− x− 2)y ′ + (3− 6 ln x)y

]
.

y(4) =
−1

x4

[
(x2 + x3)y ′′′ + (3x2 ln x− 2x2 − 4x)y ′′+

+ (6 + 8x− 12x ln x)y ′ + (18 ln x− 15)y
]
.

Given that φ(1) = 2 and φ ′(1) = 0 , the first equation gives φ ′′(1) = 0 and the last
two equations give φ ′′′(1) = −6 and φ(4)(1) = 42 .

6. The zeros of P (x) = x2 − 2x− 3 are x = −1 and x = 3. For x0 = 4, x0 = −4,
and x0 = 0 the distance to the nearest zero of P (x) is 1, 3, and 1, respectively. Thus
a lower bound for the radius of convergence for series solutions in powers of (x− 4),
(x+ 4), and x is ρ = 1, ρ = 3, and ρ = 1, respectively.

7. The zeros of P (x) = 1 + x3 are the three cube roots of −1 . They all lie on the
unit circle in the complex plane. So for x0 = 0 , ρ = 1 . For x0 = 2 , the nearest
root is eiπ/3 = (1 + i

√
3 )/2 , hence ρ =

√
3 .

9.(a) Since p(x) = 1 has no zeros, the radius of convergence about x0 = 0 is ρ =∞.

(b) p(x) = −x and q(x) = −1 are analytic for all x .

(c) p(x) = −x and q(x) = −1 are analytic for all x .

(d) p(x) = 0 and q(x) = kx2 are analytic for all x .

(e) The only root of P (x) = 1− x is 1 . Hence ρ = 1 .

(f) Since P (x) = 2 + x2 has zeros at x = ±
√

2i, the lower bound for the radius of
convergence of the series solution about x0 = 0 is ρ =

√
2.

(g) p(x) = x and q(x) = 2 are analytic for all x .
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(h) P (x) = x has a zero at x = 0 and since x0 = 1, ρ = 1.

(i) The zeroes of P (x) = 1 + x2 are ± i . Hence ρ = 1 .

(j) The zeroes of P (x) = 4− x2 are ±2 . Hence ρ = 2 .

(k) The zeroes of P (x) = 3− x2 are ±
√

3 . Hence ρ =
√

3 .

(l) The only root of P (x) = 1− x is 1 . Hence ρ = 1 .

(m) p(x) = x/2 and q(x) = 3/2 are analytic for all x .

(n) p(x) = (1 + x)/2 and q(x) = 3/2 are analytic for all x .

10.(a) If we assume that y =
∑∞
n=0 anx

n, then y′ =
∑∞
n=1 nanx

n−1 and also y′′ =∑∞
n=2 n(n− 1)anx

n−2. Substituting in the D.E. gives

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n −

∞∑
n=1

nanx
n + α2

∞∑
n=0

anx
n = 0.

Shifting indices of summation and collecting coefficients of like powers of x yields
the equation (

2 · 1 · a2 + α2a0
)
x0 +

[
3 · 2 · a3 + (α2 − 1)a1

]
x1+

+

∞∑
n=2

[
(n+ 2)(n+ 1)an+2 + (α2 − n2)an

]
xn = 0.

Hence the recurrence relation is an+2 = (n2 − α2)an/(n+ 2)(n+ 1), n = 0, 1, 2, . . ..
For the first solution we choose a1 = 0. We find that a2 = −α2a0/2 · 1, a3 =
0, a4 = (22 − α2)a2/4 · 3 = −(22 − α2)α2a0/4!, . . ., and then by induction a2m =
−
[
(2m− 2)2 − α2

]
. . . (22 − α2)α2a0/(2m)!, and a2m+1 = 0, so

y1(x) = 1− α2

2!
x2 − (22 − α2)α2

4!
x4 − . . .− [(2m− 2)2 − α2] . . . (22 − α2)α2

(2m)!
x2m − . . . ,

where we have set a0 = 1. For the second solution we take a0 = 0 and a1 = 1 in
the recurrence relation to obtain the desired solution.

(b) If α is an even integer 2k, then (2m− 2)2 − α2 = 4(m− 1)2 − 4k2. Thus when
m = k + 1 all terms in the series for y1(x) are zero after the x2k term. A similar
argument shows that if α = 2k + 1, then all terms in y2(x) are zero after the x2k+1

term.

(c) Using the previous parts, we obtain that p0(x) = 1, p1(x) = x, p2(x) = 1− 2x2

and p3(x) = x− 4x3/3.

11. The Taylor series about x = 0 for sinx is sinx = x− x3/3! + x5/5!− . . .. As-
suming that y =

∑∞
n=2 anx

n, we find

y′′ + (sinx)y = 2a2 + 6a3x+ 12a4x
2 + 20a5x

3 + 30a6x
4 + 42a7x

5 + . . .+
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+(x− x3/3! + x5/5!− . . .)(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + . . .) =

= 2a2 + (6a3 + a0)x+ (12a4 + a1)x2 + (20a5 + a2 − a0/6)x3+

+(30a6 + a3 − a1/6)x4 + (42a7 + a4 − a2/3! + a0/5!)x5 + . . . = 0.

Hence a2 = 0, a3 = −a0/6, a4 = −a1/12, a5 = a0/120, a6 = (a1 + a0)/180, a7 =
−a0/7! + a1/504, . . .. We set a0 = 1 and a1 = 0 and obtain y1(x) = (1− x3/6 +
x5/120 + x6/180 + . . .). Next we set a0 = 0 and a1 = 1 and obtain y2(x) = (x−
x4/12 + x6/180 + x7/504 + . . .). Since p(x) = 1 and q(x) = sinx, both have ρ =∞;
the solution in this case converges for all x, that is, ρ =∞.

18. We know that ex = 1 + x+ x2/2! + x3/3! + . . . , and therefore ex
2

= 1 + x2 +
x4/2! + x6/3! + . . .. Hence if y =

∑∞
n=0 anx

n, we have y′ =
∑∞
n=1 nanx

n−1, so

a1 + 2a2x+ 3a3x
2 + . . . = (1 + x2 + x4/2 + . . .)(a0 + a1x+ a2x

2 + . . .) =

= a0 + a1x+ (a0 + a2)x2 + . . . .

Thus, a1 = a0, 2a2 = a1, and 3a3 = a0 + a2, which yield the desired solution.

20. Substituting y =
∑∞
n=0 anx

n into the differential equation we obtain that∑∞
n=1 nanx

n−1 −
∑∞
n=0 anx

n = x2. Shifting the indices then gives the equation∑∞
n=0 [(n+ 1)an+1 − an]xn = x2. Equating coefficients of both sides then gives:

a1 − a0 = 0, 2a2 − a1 = 0, 3a3 − a2 = 1 and (n+ 1)an+1 = an for n = 3, 4, . . .. Thus
a1 = a0, a2 = a1/2 = a0/2, a3 = 1/3 + a2/3 = 1/3 + a0/2 · 3, a4 = a3/4 = 1/3 · 4 +
a0/2 · 3 · 4 = 2/4! + a0/4!, and in general an = an−1/n = 2/n! + a0/n!. Hence

y(x) = a0

(
1 + x+

x2

2!
+ . . .+

xn

n!
. . .

)
+ 2

(
x3

3!
+
x4

4!
+ . . .+

xn

n!
+ . . .

)
.

Using the power series for ex, the first and second sums can be rewritten as a0e
x +

2(ex − 1− x− x2/2), which is the same solution as we found using methods of
Chap. 2.

22. Substituting y =
∑∞
n=0 anx

n into the Legendre equation, shifting indices, and
collecting coefficients of like powers of x yields

[2 · 1 · a2 + α(α+ 1)a0]x0 + (3 · 2 · a3 − [2 · 1− α(α+ 1)]a1)x1+

+

∞∑
n=2

((n+ 2)(n+ 1)an+2 − [n(n+ 1)− α(α+ 1)]an)xn = 0.

Thus a2 = −α(α+ 1)a0/2!, a3 = [2 · 1− α(α+ 1)]a1/3! = −(α− 1)(α+ 2)a1/3! and
the recurrence relation gives us (n+ 2)(n+ 1)an+2 = −[α(α+ 1)− n(n+ 1)]an =
−(α− n)(α+ n+ 1)an, n = 2, 3, . . . . Setting a1 = 0, a0 = 1 yields a solution with
a3 = a5 = a7 = . . . = 0 and a4 = α(α− 2)(α+ 1)(α+ 3)/4 . . ., and generally, a2m =
(−1)m[α(α− 2) . . . (α− 2m+ 2)][(α+ 1) . . . (α+ 2m− 1)]/(2m)!. The second lin-
early independent solution is obtained by setting a0 = 0 and a1 = 1. The co-
efficients are then a2 = a4 = a6 = . . . = 0 and a3 = (α− 1)(α+ 2)/3!, and a5 =
−(α− 3)(α+ 4)a3/5 · 4 = (α− 1)(α− 3)(α+ 2)(α+ 4)/5!.
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26. Using the chain rule, we have

dF (φ)

dφ
=
dF [φ(x)]

dx

dx

dφ
= −f ′(x) sinφ(x) = −f ′(x)

√
1− x2,

d2F (φ)

dφ2
=

d

dx

[
−f ′(x)

√
1− x2

] dx
dφ

= (1− x2)f ′′(x)− xf ′(x),

which when substituted into the D.E. yields the desired result.

28. Since [(1− x2)y′]′ = (1− x)2y′′ − 2xy′, the Legendre Equation, from Problem
22, can be written as shown. Thus, carrying out the multiplications indicated yields
the two equations

Pm
[
(1− x2)P ′n

]′
= −n(n+ 1)PnPm

Pn
[
(1− x2)P ′m

]′
= −m(m+ 1)PnPm.

As long as n 6= m, the second equation can be subtracted from the first and the
result integrated from −1 to 1 to obtain∫ 1

−1

{
Pm
[
(1− x2)P ′n

]′ − Pn [(1− x2)P ′m
]′}

dx = [m(m+ 1)− n(n+ 1)]

∫ 1

−1
PnPmdx.

The left side may be integrated by parts to yield[
Pm(1− x2)P ′n − Pn(1− x2)P ′m

]1
−1 +

∫ 1

−1

[
P ′m(1− x2)P ′n − P ′n(1− x2)P ′m

]
dx,

which is zero. Thus
∫ 1

−1 Pn(x)Pm(x)dx = 0 for n 6= m.

5.4

2. This equation is of the form of an Euler equation with x replaced by x+ 1,
so we seek solutions of the form y = (x+ 1)r for x+ 1 > 0. Substitution of y into
the D.E. yields F (r) = [r(r − 1) + 3r + 3/4](x+ 1)r = 0. Thus r2 + 2r + 3/4 = 0,
which gives r = −3/2,−1/2. The general solution of the differential equation is
then y = c1|x+ 1|−1/2 + c2|x+ 1|−3/2, x 6= −1.

4. If y = xr, then F (r) = r(r − 1) + 3r + 5 = 0. So r2 + 2r + 5 = 0 and then we ob-
tain r =

(
−2±

√
4− 20

)
/2 = −1± 2i. Thus the general solution of the differential

equation is y = c1x
−1 cos(2 ln |x|) + c2x

−1 sin(2 ln |x|), x 6= 0.

9. Again let y = xr to obtain F (r) = r(r − 1)− 5r + 9 = 0, or (r − 3)2 = 0. Thus
the roots are x = 3, 3 and y = c1x

3 + c2x
3 ln |x|, x 6= 0, is the solution of the dif-

ferential equation.

13. In this case F (r) = 2r(r − 1) + r − 3 = 2r2 − r − 3 = (2r − 3)(r + 1) = 0, so
y = c1x

3/2 + c2x
−1 (since x0 = 1, we do not need |x|) and y′ = (3/2)c1x

1/2 − c2x−2.
Setting x = 1 in y and y′, we obtain c1 + c2 = 1 and (3/2)c1 − c2 = 4, which yield
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c1 = 2 and c2 = −1. Hence y = 2x3/2 − x−1. As x→ 0+, we have y → −∞ due to
the second term.

16. We have F (r) = r(r − 1) + 3r + 5 = r2 + 2r + 5 = 0. Thus r1, r2 = −1± 2i
and y = x−1[c1 cos(2 lnx) + c2 sin(2 lnx)]. Then y(1) = c1 = 1 and we obtain that
y′ = −x−2[cos(2 lnx) + c2 sin(2 lnx)] + x−1[− sin(2 lnx)2/x+ c2 cos(2 lnx)2/x], so
that y′(1) = −1 + 2c2 = −1, or c2 = 0. Hence y = x−1 cos(2 lnx) for x > 0. As
x→ 0+ this will oscillate rapidly, with large amplitudes. (The graphing program
can’t show this, but the form of y(x) clearly indicates this behavior.)

17. Since the coefficients of y, y′, and y′′ have no common factors, and since P (x)
vanishes only at x = 0, we conclude that x = 0 is a singular point. Writing the
differential equation in the form y′′ + p(x)y′ + q(x)y = 0, we get p(x) = (1− x)/x
and q(x) = 1. Thus for the singular point we have limx→0 xp(x) = limx→0 1− x =
1, and limx→0 x

2q(x) = 0, thus x = 0 is a regular singular point.

21. Writing the differential equation in the form y′′ + p(x)y′ + q(x)y = 0, we find
p(x) = x/(1− x)(1 + x)2 and q(x) = (1 + x)/(1− x2)2. Therefore x = ±1 are sin-
gular points. Since limx→1(x− 1)p(x) and limx→1(x− 1)2q(x) both exist, we con-
clude that x = 1 is a regular singular point. Finally, since limx→−1(x+ 1)p(x) does
not exist, we conclude that x = −1 is an irregular singular point.

28. Writing the differential equation in the form y′′ + p(x)y′ + q(x)y = 0, we see
that p(x) = ex/x and q(x) = (3 cosx)/x. Thus x = 0 is a singular point. Since
xp(x) = ex is analytic at x = 0 and x2q(x) = 3x cosx is analytic at x = 0, the point
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x = 0 is a regular singular point.

33. Writing the differential equation in the form y′′ + p(x)y′ + q(x)y = 0, we see
that p(x) = x/ sinx and q(x) = 4/ sinx. Since limx→0 q(x) does not exist, the point
x0 = 0 is a singular point and since neither limx→±nπ p(x) nor limx→±nπ q(x) exist,
either, the points x0 = ±nπ are also singular points. To determine whether the
singular points are regular or irregular we must use Eq. (31) and the result #7 of
multiplication and division of power series from Section 5.1. For x0 = 0, we have

xp(x) =
x2

sinx
=

x2

x− x3

6 + . . .
= x

[
1 +

x2

6
+ . . .

]
= x+

x3

6
+ . . . ,

which converges about x0 = 0 and thus xp(x) is analytic at x0 = 0. x2q(x), by
similar steps, is also analytic at x0 = 0 and thus x0 = 0 is a regular singular point.
For x0 = nπ ,we have

(x− nπ)p(x) =
(x− nπ)x

sinx
=

(x− nπ)[(x− nπ) + nπ]

±(x− nπ)∓ (x−nπ)3
6 ± . . .

= ±[(x− nπ) + nπ]

[
1 +

(x− nπ)2

6
+ . . .

]
,

which converges about x0 = nπ and thus (x− nπ)p(x) is analytic at x = nπ. Sim-
ilarly (x+ nπ)p(x) and (x± nπ)2q(x) are analytic and thus x0 = ±nπ are regular
singular points.

35. Substituting y = xr, we find that r(r − 1) + αr + 5/2 = 0 or r2 + (α− 1)r +

5/2 = 0. Thus r1, r2 =
[
−(α− 1)±

√
(α− 1)2 − 10

]
/2. In order for solutions to

approach zero as x→ 0, it is necessary that the real parts of r1 and r2 be positive.
Suppose that α > 1, then

√
(α− 1)2 − 10 is either imaginary or real and less than

α− 1; hence the real parts of r1 and r2 will be negative. Suppose that α = 1,
then r1, r2 = ±i

√
10 and the solutions are oscillatory. Suppose that α < 1, then√

(α− 1)2 − 10 is either imaginary or real and less than 1− α; hence the real parts
of r1 and r2 will be positive. Thus if α < 1, the solutions of the differential equation
will approach zero as x→ 0.

39. In all cases the roots of F (r) = 0 are given by Eq. (6) and the forms of the
solution are given in Eqs. (25), (26), and (27).

(a) The real part of the root must be positive so, from Eq. (6), α < 1. Also β > 0,
since the

√
(α− 1)2 − 4β term must be less than |α− 1|.

(b) Similarly to part (a), if α < 1, then here we need β ≥ 0 (a single zero eigenvalue
is allowed in this case) or if α = 1, then we need β > 0.

(c) The real part of the root has to be negative, so α > 1, and β > 0 (a negative β
value would give us a positive root, β = 0 would give us a zero root).



110 Chapter 5. Series Solutions of Second Order Linear Equations

(d) The real part of the root must be negative, so α > 1, with β ≥ 0 (for β = 0 one
root is zero, which gives a bounded solution as x→∞). If α = 1, then the roots
are ±

√
−4β, so β > 0 will yield oscillatory solutions as x→∞, which are bounded.

(e) According to (b) and (d) this happens when α = 1 and β > 0.

40. Assume that y = v(x)xr1 . Then we obtain that y′ = v(x)r1x
r1−1 + v′(x)xr1 and

y′′ = v(x)r1(r2 − 1)xr1−2 + 2v′(x)r1x
r1−1 + v′′(x)xr1 . Substituting in the D.E. and

collecting terms yields xr1+2v′′ + (α+ 2r1)xr1+1v′ + [r1(r1 − 1) + αr1 + β]xr1v =
0. Now we make use of the fact that r1 is a double root of f(r) = r(r − 1) + αr +
β. This means that f(r1) = 0 and f ′(r1) = 2r1 − 1 + α = 0. Hence the D.E. for
v reduces to xr1+2v′′ + xr1+1v′. Since x > 0, we may divide by xr1+1 to obtain
xv′′ + v′ = 0. Thus v(x) = lnx and a second solution is y = xr1 lnx.

41. Substituting y =
∑∞
n=0 anx

n into the differential equation yields

2

∞∑
n=2

n(n− 1)anx
n−1 + 3

∞∑
n=1

nanx
n−1 +

∞∑
n=0

anx
n+1 = 0.

The last sum becomes
∑∞
n=2 an−2x

n−1 (let m = n+ 2 and then replace m by n),
the first term of the middle sum is 3a1, and thus we have

3a1 +

∞∑
n=2

{[2n(n− 1) + 3n]an + an−2}xn−1 = 0.

Hence a1 = 0 and an = −an−2/n(2n+ 1), which is the desired recurrence relation.
Thus all even coefficients are found in terms of a0 and all odd coefficients are zero,
thereby yielding only one solution of the desired form. The result is

y = a0(1− x2

2 · 5
+

x4

2 · 4 · 5 · 9
− . . .).

43. If ξ = 1/x, then
dy

dx
=
dy

dξ

dξ

dx
= − 1

x2
dy

dξ
= −ξ2 dy

dξ
,

d2y

dx2
=

d

dξ

(
−ξ2 dy

dξ

)
dξ

dx
=

(
−2ξ

dy

dξ
− ξ2 d

2y

dξ2

)(
− 1

x2

)
=

ξ4
d2y

dξ2
+ 2ξ3

dy

dξ
.

Substituting in the differential equation, we have

P (1/ξ)

[
ξ4
d2y

dξ2
+ 2ξ3

dy

dξ

]
+Q(1/ξ)

[
−ξ2 dy

dξ

]
+R(1/ξ)y = 0,

or

ξ4P (1/ξ)
d2y

dξ2
+
[
2ξ3P (1/ξ)− ξ2Q(1/ξ)

] dy
dξ

+R(1/ξ)y = 0.

The result follows from the theory of singular points at ξ = 0.
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45. Since p(x) = x2, Q(x) = x, and R(x) = −4, we have

f(ξ) =
[
2P (1/ξ)/ξ −Q(1/ξ)/ξ2

]
/P (1/ξ) = 2/ξ − 1/ξ = 1/ξ

and g(ξ) = R(1/ξ)/ξ4P (1/ξ) = −4/ξ2. Thus the point at infinity is a singular point.
Since both ξf(ξ) and ξ2g(ξ) are analytic at ξ = 0, the point at infinity is a regular
singular point.

47. Since p(x) = x2, Q(x) = x, and R(x) = x2 − ν2, we have

f(ξ) =
[
2P (1/ξ)/ξ −Q(1/ξ)/ξ2

]
/P (1/ξ) = 2/ξ − 1/ξ = 1/ξ

and g(ξ) = R(1/ξ)/ξ4P (1/ξ) = (1/ξ2 − ν2)/ξ2 = 1/ξ4 − ν2/ξ2. Thus the point at
infinity is a singular point. Although ξf(ξ) = 1 is analytic at ξ = 0, ξ2g(ξ) = 1/ξ2 −
ν2 is not, so the point at infinity is an irregular singular point.

5.5

2.(a) If the D.E. is put in the standard form y′′ + p(x)y + q(x)y = 0, then p(x) =
x−1 and q(x) = 1− 1/9x2. Thus x = 0 is a singular point. Since xp(x)→ 1 and
x2q(x)→ −1/9 as x→ 0, it follows that x = 0 is a regular singular point.

(b) In determining a series solution of the D.E. it is more convenient to leave the
equation in the form given rather then divide by x2, the coefficient of y′′. If we
substitute y =

∑∞
n=0 anx

n+r, we have

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r +

∞∑
n=0

(n+ r)anx
n+r +

(
x2 − 1

9

) ∞∑
n=0

anx
n+r = 0.

Note that

x2
∞∑
n=0

anx
n+r =

∞∑
n=0

anx
n+r+2 =

∞∑
n=2

an−2x
n+r.

Thus we have[
r(r − 1) + r − 1

9

]
a0x

r +

[
(r + 1)r + a(r + 1)− 1

9

]
a1x

r+1+

+

∞∑
n=2

{[
(n+ r)(n+ r − 1) + (n+ r)− 1

9

]
an + an−2

}
xn+r = 0.

From the first term, the indicial equation is r2 − 1/9 = 0 with roots r1 = 1/3 and
r2 = −1/3. For either value of r it is necessary to take a1 = 0 in order that the
coefficient of xr+1 be zero. The recurrence relation is an = −an−2/[(n+ r)2 − 1/9].

(c) For r = 1/3 we have

an =
−an−2

(n+ 1/3)
2 − (1/3)

2 = − an−2
(n+ 2/3)n

, n = 2, 3, 4 . . . .
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Since a1 = 0, it follows from the recurrence relation that a3 = a5 = a7 = . . . = 0.
For the even coefficients it is convenient to let n = 2m,m = 1, 2, 3, . . .. Then a2m =
−a2m−2/22m (m+ 1/3). The first few coefficients are given by

a2 =
(−1)a0

22 (1 + 1/3) 1
, a4 =

(−1)a2
22 (2 + 1/3) 2

=
a0

24 (1 + 1/3) (2 + 1/3) 2!

a6 =
(−1)a4

22 (3 + 1/3) 3
=

(−1)a0
26 (1 + 1/3) (2 + 1/3) (3 + 1/3) 3!

,

and the coefficient of x2m for m = 1, 2, . . . is

a2m =
(−1)ma0

22mm! (1 + 1/3) (2 + 1/3) . . . (m+ 1/3)
.

Thus one solution (on setting a0 = 1) is

y1(x) = x1/3

[
1 +

∞∑
m=1

(−1)m

m! (1 + 1/3) (2 + 1/3) . . . (m+ 1/3)

(x
2

)2m]

(d) Since r2 = −1/3 6= r1 and r1 − r2 = 2/3 is not an integer, we can calculate
a second series solution corresponding to r = −1/3. The recurrence relation is
n(n− 2/3)an = −an−2, which yields the desired solution following the steps in part
(c). Note that a1 = 0, as in the first solution, and thus all the odd coefficients are
zero.

4.(a) Putting the D.E. in the form y′′ + p(x)y′ + q(x)y = 0, we see that p(x) =
1/x and q(x) = −1/x. Thus x = 0 is a singular point, and since xp(x)→ 1 and
x2q(x)→ 0, as x→ 0, x = 0 is a regular singular point.

(b) Substituting y =
∑∞
n=0 anx

n+r in xy′′ + y′ − y = 0 and shifting indices, we ob-
tain

∞∑
n=−1

an+1(r + n+ 1)(r + n)xn+r +

∞∑
n=−1

an+1(r + n+ 1)xn+r −
∞∑
n=0

anx
n+r = 0,

or

[r(r − 1) + r]a0x
−1+r +

∞∑
n=0

[
(r + n+ 1)2an+1 − an

]
xn+r = 0.

From the first coefficient we find r2 = 0 is the indicial equation, and from the
coefficient of xn+r we find the recurrence relation is an+1 = an/(n+ 1 + r)2.

(c) Setting r = 0 in the reccurence relation, we find (n+ 1)2an+1 = an, n = 0, 1, 2, . . . .
The coefficients are a1 = a0, a2 = a1/2

2 = a0/2
2, a3 = a2/3

2 = a0/3
2 · 22, a4 =

a3/4
2 = a0/4

2 · 32 · 22, . . . and an = a0/(n!)2. Thus one solution (on setting a0 = 1)
is y =

∑∞
n=0 x

n/(n!)2.

(d) Since the indicial equation has only one root, we only have one solution of the
form y = xr

∑∞
n=0 anx

n+r.
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11. (a) If we make the change of variable t = x− 1 and let y = u(t), then the Legen-
dre equation transforms to (t2 + 2t)u′′(t) + 2(t+ 1)u′(t)− α(α+ 1)u(t) = 0. Since
x = 1 is a regular singular point of the original equation, we know that t = 0 is a
regular singular point of the transformed equation. Substituting u =

∑∞
n=0 ant

n+r

in the transformed equation and shifting indices, we obtain

∞∑
n=0

(n+ r)(n+ r − 1)ant
n+r + 2

∞∑
n=−1

(n+ r + 1)(n+ r)an+1t
n+r+

+2

∞∑
n=0

(n+ r)ant
n+r + 2

∞∑
n=−1

(n+ r + 1)an+1t
n+r − α(α+ 1)

∞∑
n=0

ant
n+r = 0,

or

[2r(r − 1) + 2r]a0t
r−1+

+

∞∑
n=0

{2(n+ r + 1)2an+1 + [(n+ r)(n+ r + 1)− α(α+ 1)]an}tn+r = 0.

The indicial equation is 2r2 = 0, so r = 0 is a double root. Thus there will be only
one series solution of the form y =

∑∞
n=0 ant

n+r.

(b) The recurrence relation is

2(n+ 1)2an+1 = [α(α+ 1)− n(n+ 1)]an, n = 0, 1, 2, . . . .

We have

a1 = [α(α+ 1)]a0/2 · 12, a2 = [α(α+ 1)][α(α+ 1)− 1 · 2]a0/2
2 · 22 · 12,

a3 = [α(α+ 1)][α(α+ 1)− 1 · 2][α(α+ 1)− 2 · 3]a0/2
3 · 32 · 22 · 12, . . . , and

an = [α(α+ 1)][α(α+ 1)− 1 · 2] . . . [α(α+ 1)− (n− 1) · n]a0/2
n(n!)2.

Reverting to the variable x, it follows that one solution of the Legendre equation
in powers of x− 1 is

y1(x) =

∞∑
n=0

[α(α+ 1)][α(α+ 1)− 1 · 2] . . . [α(α+ 1)− (n− 1) · n](x− 1)n/2n(n!)2

where we have set a0 = 1, which is equivalent to the answer in the text if a (−1) is
factored out of each square bracket.

14. (a) The standard form is y′′ + p(x)y′ + q(x)y = 0, with p(x) = 1/x and q(x) =
1. Thus x = 0 is a singular point; and since xp(x)→ 1 and x2q(x)→ 0 as x→ 0,
x = 0 is a regular singular point.

(b) Substituting y =
∑∞
n=0 anx

n+r into x2y′′ + xy′ + x2y = 0 and shifting indices
appropriately, we obtain

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r +

∞∑
n=0

(n+ r)anx
n+r +

∞∑
n=2

an−2x
n+r = 0,
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or

[r(r − 1) + r]a0x
r + [(1 + r)r + 1 + r]a1x

r+1 +

∞∑
n=2

[
(n+ r)2an + an−2

]
xn+r = 0.

The indicial equation is, r2 = 0 so r = 0 is a double root. It is necessary to take
a1 = 0 in order that the coefficient of xr+1 be zero.

(c) The recurrence relation is n2an = −an−2, n = 2, 3, . . .. Since a1 = 0 it follows
that a3 = a5 = a7 = . . . = 0. For the even coefficients we let n = 2m, m = 1, 2, . . ..
Then a2m = −a2m−2/22m2 so a2 = −a0/22 · 12, a4 = a0/2

2 · 22 · 12 · 22, . . ., so we
get a2m = (−1)ma0/2

2m(m!)2. Thus one solution of the Bessel equation of order
zero is J0(x) = 1 +

∑∞
m=1(−1)mx2m/22m(m!)2 where we have set a0 = 1.

(d) Using the ratio test, it can be shown that the series converges for all x. Also
note that J0(x)→ 1 as x→ 0.

15. In order to determine the form of the integral for x near zero, we must study
the integrand for x small. Using the above series for J0, we have

1

x[J0(x)]2
=

1

x[1− x2/2 + . . .]2
=

1

x[1− x2 + . . .]
=

1

x
[1 + x2 + . . .]

for x small. Thus

y2(x) = J0(x)

∫
dx

x[J0(x)]2
= J0(x)

∫ [
1

x
+ x+ . . .

]
dx = J0(x)

[
lnx+

x2

x
+ . . .

]
,

and it is clear that y2(x) will contain a logarithmic term.

16.(a) Putting the D.E. in the standard form y′′ + p(x)y′ + q(x)y = 0, we see that
p(x) = 1/x and q(x) = (x2 − 1)/x2. Thus x = 0 is a singular point and since
xp(x)→ 1 and x2q(x)→ −1 as x→ 0, x = 0 is a regular singular point.

(b) Substituting y =
∑∞
n=0 anx

n+r into x2y′′ + xy′ + (x2 − 1)y = 0, shifting indices
appropriately and collecting coefficients of common powers of x, we obtain

[r(r − 1) + r − 1]a0x
r + [(1 + r)r + 1 + r − 1]a1x

r+1

+

∞∑
n=2

{[
(n+ r)2 − 1

]
an + an−2

}
xn+r = 0.

The indicial equation is r2 − 1 = 0 so the roots are r1 = 1 and r2 = −1.

(c) For either value of r it is necessary to take a1 = 0 in order that the coef-
ficient of xr+1 be zero. The recurrence relation is [(n+ r)2 − 1]an = −an−2, n =
2, 3, 4, . . .. For r = 1 we have an = −an−2/[n(n+ 2)], n = 2, 3, 4, . . .. Since a1 = 0 it
follows that a3 = a5 = a7 = . . . = 0. Let n = 2m. Then a2m = −a2m−2/22m(m+
1), m = 1, 2, . . ., so a2 = −a0/22 · 1 · 2, a4 = −a2/22 · 1 · 2 · 3 = a0/2

2 · 22 · 1 · 2 · 2 ·
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3, . . ., and a2m = (−1)ma0/2
2mm!(m+ 1)!. Thus one solution (set a0 = 1/2) of the

Bessel equation of order 1 is

J1(x) =
x

2

∞∑
n=0

(−1)nx2n

(n+ 1)!n!22n
.

(d) The ratio test shows that the series converges for all x. Also note that J1(x)→ 0
as x→ 0.

(e) For r = −1 the recurrence relation is [(n− 1)2 − 1]an = −an−2, n = 2, 3, . . ., so
for n = 2 the coefficient of a2 is zero and we cannot calculate a2. Consequently, it
is not possible to find a series solution of the form x−1

∑∞
n=0 bnx

n.

5.6

1.(a) The differential equation has the form P (x)y′′ +Q(x)y′ +R(x)y = 0 with
P (x) = x, Q(x) = 2x, and R(x) = 6ex. From this we find p(x) = Q(x)/P (x) = 2
and q(x) = R(x)/P (x) = 6ex/x, and thus x = 0 is a singular point. Since xp(x) =
2x and x2q(x) = 6xex are analytic at x = 0, we conclude that x = 0 is a regular
singular point.

(b) We have xp(x)→ 0 = p0 and x2q(x)→ 0 = q0 as x→ 0 and thus Eq. (7), the
indicial equation, is F (r) = r(r − 1) = 0 which has roots r1 = 1 and r2 = 0. These
are the exponents of the singularity at x = 0.

3.(a) The differential equation has the form P (x)y′′ +Q(x)y′ +R(x)y = 0 with
P (x) = x(x− 1), Q(x) = 6x2, and R(x) = 3. Since P (x), Q(x), and R(x) are
polynomials with no common factors and P (0) = 0 and P (1) = 0, we conclude
that x = 0 and x = 1 are singular points. The first point, x = 0, can be shown
to be a regular singular point using steps similar to those shown in Problem 1.
The indicial equation is F (r) = r(r − 1) and the exponents are 1 and 0 here. For
x = 1, we must put the differential equation in the form seen in Example (1). To
do this, divide the differential equation by x and multiply by (x− 1) to obtain
(x− 1)2y′′ + 6x(x− 1)y + 3(x− 1)y/x = 0. Comparing this to Example (1), we
find that (x− 1)p(x) = 6x and (x− 1)2q(x) = 3(x− 1)/x, which are both analytic
at x = 1, and hence x = 1 is a regular singular point.

(b) These last two expressions are p0 = 6 and q0 = 0, respectively, at x = 1, and thus
the indicial equation is F (r) = r(r − 1) + 6r + 0 = r(r + 5) = 0. The exponents are
0 and −5 at this point.

9.(a) For this differential equation,

p(x) =
−(1 + x)

x2(1− x)
and q(x) =

2

x(1− x)
,
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and thus x = 0, 1 are singular points. Since xp(x) is not analytic at x = 0, x = 0 is
not a regular singular point. Looking at

(x− 1)p(x) =
1 + x

x2
and (x− 1)2q(x) =

2(1− x)

x
,

we see that x = 1 is a regular singular point.

(b) As in Example (1),

p0 = lim
x→1

(x− 1)p(x) = 2 and q0 = lim
x→1

(x− 1)2q(x) = 0.

Thus the indicial equation is F (r) = r2 + r and r1 = 0 and r2 = −1.

13.(a) Note that p(x) = 1/x and q(x) = −1/x. Furthermore, xp(x) = 1 and x2q(x) =
−x. It follows that

p0 = lim
x→0

(1) = 1 and q0 = lim
x→0

(−x) = 0,

and therefore x = 0 is a regular singular point.

(b) The indicial equation is given by r(r − 1) + r = 0, that is, r2 = 0 , with roots
r1 = r2 = 0 . This implies we can use Eq.(18) for the second solution.

(c) Let y = a0 + a1x+ a2x
2 + . . .+ anx

n + . . . . Substitution into the ODE results
in

∞∑
n=0

(n+ 2)(n+ 1)an+2 x
n+1 +

∞∑
n=0

(n+ 1)an+1x
n −

∞∑
n=0

anx
n = 0 .

After adjusting the indices in the first series, we obtain

a1 − a0 +

∞∑
n=1

[n(n+ 1)an+1 + (n+ 1)an+1 − an]xn = 0 .

Setting the coefficients equal to zero, it follows that for n ≥ 0 ,

an+1 =
an

(n+ 1)2
.

So for n ≥ 1 ,

an =
an−1
n2

=
an−2

n2(n− 1)2
= . . . =

1

(n!)2
a0 .

With a0 = 1 , one solution is

y1(x) = 1 + x+
1

4
x2 +

1

36
x3 + . . .+

1

(n!)2
xn + . . . .

For a second solution, set y2(x) = y1(x) ln x + b1x+ b2x
2 + . . .+ bnx

n + . . . . Sub-
stituting into the ODE, we obtain

L [y1(x)] · ln x+ 2 y ′1(x) + L

[ ∞∑
n=1

bn x
n

]
= 0 .
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Since L [y1(x)] = 0 , it follows that

L

[ ∞∑
n=1

bn x
n

]
= −2 y ′1(x) .

More specifically,

b1 +

∞∑
n=1

[n(n+ 1)bn+1 + (n+ 1)bn+1 − bn]xn = −2− x− 1

6
x2 − 1

72
x3 − 1

1440
x4 − . . .

Equating the coefficients, we obtain the system of equations b1 = −2, 4b2 − b1 =
−1, 9b3 − b2 = −1/6, 16b4 − b3 = −1/72, . . .. Solving these equations for the co-
efficients, b1 = −2, b2 = −3/4, b3 = −11/108, b4 = −25/3456 , . . . . Therefore a
second solution is

y2(x) = y1(x) ln x+

[
−2x− 3

4
x2 − 11

108
x3 − 25

3456
x4 − . . .

]
.

17.(a) We have

p(x) =
sinx

x2
and q(x) =

cosx

x2
,

so that x = 0 is a singular point. Note that xp(x) = sinx/x→ 1 = p0 as x→ 0 and
x2q(x) = − cosx→ −1 = q0 as x→ 0. In order to assert that x = 0 is a regular
singular point we must demonstrate that xp(x) and x2q(x), with xp(x) = 1 at x = 0
and x2q(x) = −1 at x = 0, have convergent power series (are analytic) about x = 0.
We know that cosx is analytic, so we need only consider sinx/x. Now

sinx =

∞∑
n=0

(−1)nx2n+1/(2n+ 1)!

for −∞ < x <∞, so

sinx/x =

∞∑
n=0

(−1)nx2n/(2n+ 1)!

and hence is analytic. Thus we conclude that x = 0 is a regular singular point.

(b) From part (a) it follows that the indicial equation is r(r − 1) + r − 1 = r2 − 1 =
0 and the roots are r1 = 1, r2 = −1.

(c) To find the first few terms of the solution corresponding to r1 = 1, assume that

y(x) = x

∞∑
n=0

anx
n = x(a0 + a1x+ a2x

2 + . . .) = a0x+ a1x
2 + a2x

3 + . . . .

Substituting this series for y in the differential equation and expanding sinx and
cosx about x = 0 yields

x2(2a1 + 6a2x+ 12a3x
2 + 20a4x

3 + . . .)+

+(x− x3/3! + x5/5!− . . .)(a0 + 2a1x+ 3a2x
2 + 4a3x

3 + 5a4x
4 + . . .)

−(1− x2/2! + x4/4!− . . .)(a0x+ a1x
2 + a2x

3 + a3x
4 + a4x

5 + . . .) = 0.



118 Chapter 5. Series Solutions of Second Order Linear Equations

Collecting terms, we have

(a0 − a0)x+ (2a1 + 2a1 − a1)x2 + (6a2 + 3a2 − a0/6− a2 + a0/2)x3+

+(12a3 + 4a3 − 2a1/6− a3 + a1/2)x4+

+(20a4 + 5a4 − 3a2/6 + a0/120− a4 + a2/2− a0/24)x5 + . . . = 0.

Simplifying yields 3a1x
2 + (8a2 + a0/3)x3 + (15a3 + a1/6)x4 + (24a4 − a0/30)x5 +

. . . = 0. Thus, a1 = 0, a2 = −a0/4!, a3 = 0, a4 = a0/6!, . . .. Hence y1(x) = x−
x3/4! + x5/6! + . . . where we have set a0 = 1. For the second solution we use a
variation of Equation (24) similar to Equation (18):

y2(x) = ay1(x) lnx+ x−1

(
1 +

∞∑
n=1

cnx
n

)
=

ay1(x) lnx+
1

x
+ c1 + c2x+ c3x

2 + c4x
3 + . . . ,

so we obtain that y′2 = ay′1 lnx+ ay1x
−1 − x−2 + c2 + 2c3x+ 3c4x

2 + . . ., and y′′2 =
ay′′1 lnx+ 2ay′1x

−1 − ay1x−2 + 2x−3 + 2c3 + 3c4x+ . . .. When these are substi-
tuted in the given differential equation the terms including lnx will appear as
a[x2y′′1 + sinxy′1 − cosxy1], which is zero since y1 is a solution. For the remainder
of terms, use y1 = x− x3/24 + x5/720 and the cosx and sinx series as shown ear-
lier to obtain −c1 + (2/3 + 2a)x+ (3c3 + c1/2)x2 + (4/45 + c2/3 + 8c4)x3 + . . . =
0. These yield c1 = 0, a = −1/3, c3 = 0, and c4 = −c2/24− 1/90. We may take
c2 = 0, since this term will simply generate y1(x) over again. Thus

y2(x) = −1

3
y1(x) lnx+ x−1 − 1

90
x3.

If a computer algebra system is used, then additional terms in each series may be
obtained without much additional effort. The next terms, in each case, are shown
here:

y1(x) = x− x3

24
+

x5

720
− 43x7

1451520
+ . . . and

y2(x) = −1

3
y1(x) lnx+

1

x

[
1− x4

90
+

41x6

120960
− . . .

]
.

18.(a) We first write the D.E. in the standard form as given for Theorem 5.6.1
except that we are expanding in powers of (x− 1) rather than powers of x:

(x− 1)2y′′ + (x− 1)[(x− 1)/2 lnx]y′ + [(x− 1)2/ lnx]y = 0.

Since ln 1 = 0, x = 1 is a singular point. To show it is a regular singular point of
this D.E. we must show that (x− 1)/ lnx is analytic at x = 1; it will then follow
that (x− 1)2/ lnx = (x− 1)[(x− 1)/ lnx] is also analytic at x = 1. If we expand
lnx in a Taylor series about x = 1, we find that

lnx = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − . . . .
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Thus

(x− 1)/ lnx =

[
1− 1

2
(x− 1) +

1

3
(x− 1)2 − . . .

]−1
= 1 +

1

2
(x− 1) + . . .

has a power series expansion about x = 1, and hence is analytic.

(b) We can use the above result to obtain the indicial equation at x = 1. We have

(x− 1)2y′′ + (x− 1)

[
1

2
+

1

4
(x− 1) + . . .

]
y′ +

[
(x− 1) +

1

2
(x− 1)2 + . . .

]
y = 0.

Thus p0 = 1/2, q0 = 0, and the indicial equation is r(r − 1) + r/2 = 0. Hence r =
1/2 and r = 0.

(c) In order to find the first three nonzero terms in a series solution corresponding
to r = 1/2, it is better to keep the differential equation in its original form and to
substitute the above power series for lnx:[

(x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − 1

4
(x− 1)4 + . . .

]
y′′ +

1

2
y′ + y = 0.

Next we substitute y = a0(x− 1)1/2 + a1(x− 1)3/2 + a2(x− 1)5/2 + . . . and collect
coefficients of like powers of (x− 1), which are then set equal to zero. This requires
some algebra before we find that 6a1/4 + 9a0/8 = 0 and 5a2 + 5a1/8− a0/12 = 0.
These equations yield a1 = −3a0/4 and a2 = 53a0/480. With a0 = 1 we obtain the
solution

y1(x) = (x− 1)1/2 − 3

4
(x− 1)3/2 +

53

480
(x− 1)5/2 + . . . .

(d) Since the radius of convergence of the Taylor series for (x− 1)/ lnx is 1, we
would expect ρ = 1.

20.(a) If we write the D.E. in the standard form as given in Theorem 5.6.1, we obtain
x2y′′ + x[α/x]y′ + [β/x]y = 0 where xp(x) = α/x and x2g(x) = β/x. Neither of
these terms are analytic at x = 0, so x = 0 is an irregular singular point.

(b) Substituting y = xr
∑∞
n=0 anx

n in x3y′′ + αxy′ + βy = 0 gives

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r+1 + α

∞∑
n=0

(n+ r)anx
n+r + β

∞∑
n=0

anx
n+r = 0.

Shifting the index in the first series and collecting coefficients of common powers
of x, we obtain

(αr + β)a0x
r +

∞∑
n=1

{(n+ r − 1)(n+ r − 2)an−1 + [α(n+ r) + β]an}xn+r = 0.

Thus the indicial equation is αr + β = 0 with the single root r = −β/α.
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(c) From part (b), the recurrence relation is

an = − (n+ r − 1)(n+ r − 2)an−1
α(n+ r) + β

= −

(
n− β

α − 1
)(

n− β
α − 2

)
an−1

αn
,

n = 1, 2, . . . for r = −β/α. For β/α = −1, an = −n(n− 1)an−1/αn, so that a1 =
0 · a0 = 0. Since all other an are multiples of a1, and hence are zero, y(x) = x is
the solution. Similarly for β/α = 0, an = −(n− 1)(n− 2)an−1/αn and again for
n = 1, a1 = 0 and y(x) = 1 is the solution. Continuing in this fashion, we see that
the series solution will terminate for β/α any positive integer as well as 0 and −1.
For other values of β/α, we have

∣∣∣∣ anan−1

∣∣∣∣ =

(
n− β

α − 1
)(

n− β
α − 2

)
αn

,

which approaches ∞ as n→∞ and thus the ratio test yields a zero radius of
convergence.

21.(a) Note that

p(x) =
α

xs
and q(x) =

β

xt
.

It follows that

lim
x→0

x p(x) = lim
x→0

αx1−s and lim
x→0

x2q(x) = lim
x→0

β x2−t.

Hence if s > 1 or t > 2 , one or both of the limits does not exist. Therefore x = 0
is an irregular singular point.

(b) Substituting y =
∑∞
n=0 anx

n+r in the differential equation gives

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r + α

∞∑
n=0

(n+ r)anx
n+r+1−s + β

∞∑
n=0

anx
n+r+2−t = 0.

If s = 2 and t = 2 the first term in each of the three series is r(r − 1)a0x
r, αra0x

r−1,
and βa0x

r, respectively. Thus the indicial equation is F (r) = αra0 = 0, which
requires r = 0. Hence there is at most one solution of the assumed form.

(c) Let y = a0x
r + a1x

r+1 + . . .+ anx
r+n + . . . . Write the ODE as

x3y ′′ + αx2y ′ + β y = 0 .

Substitution of the assumed solution results in

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r+1 + α

∞∑
n=0

(n+ r)anx
n+r+1 + β

∞∑
n=0

anx
n+r = 0.

Adjusting the indices, we obtain

∞∑
n=1

(n− 1 + r)(n+ r − 2)an−1x
n+r + α

∞∑
n=1

(n− 1 + r)an−1x
n+r+



5.7 121

+β

∞∑
n=0

anx
n+r = 0.

Combining the series,

β a0x
r +

∞∑
n=1

An x
n+r = 0 ,

in which An = β an + (n− 1 + r)(n+ r + α− 2)an−1. Setting the coefficients equal
to zero, we have a0 = 0 . But for n ≥ 1 ,

an =
(n− 1 + r)(n+ r + α− 2)

β
an−1.

Therefore, regardless of the value of r, it follows that an = 0 , for n = 1, 2, . . . .

(d) In order for the indicial equation to be quadratic in r it is necessary that the
first term in the first series contribute to the indicial equation. This means that
the first term in the second and the third series cannot have powers less than xr.
The first terms are r(r − 1)a0x

r, αra0x
r+1−s and βa0x

r+2−t, respectively. Thus if
s ≤ 1 and t ≤ 2, the quadratic term will appear in the indicial equation.

5.7

1. It is clear that x = 0 is a singular point. The differential equation is in the stan-
dard form given in Theorem 5.6.1 with xp(x) = 2 and x2q(x) = x. Both are analytic
at x = 0, so x = 0 is a regular singular point. Substituting y =

∑∞
n=0 anx

n+r in
the differential equation, shifting indices appropriately, and collecting coefficients
of like powers of x yields

[r(r − 1) + 2r]a0x
r +

∞∑
n=1

[(r + n)(r + n+ 1)an + an−1]xr+n = 0.

The indicial equation is F (r) = r(r + 1) = 0 with roots r1 = 0, r2 = −1. Treating
an as a function of r, we see that an(r) = −an−1(r)/F (r + n), n = 1, 2, . . . if F (r +
n) 6= 0. Thus a1(r) = −a0/F (r + 1), a2(r) = a0/F (r + 1)F (r + 2), . . ., and an(r) =
(−1)na0/F (r + 1)F (r + 2) . . . F (r + n), provided F (r + n) 6= 0 for n = 1, 2, . . .. For
the case r1 = 0, we have an(0) = (−1)na0/F (1)F (2) . . . F (n) = (−1)na0/n!(n+ 1)!,
so one solution is

y1(x) =

∞∑
n=0

(−1)nxn/n!(n+ 1)!

where we have set a0 = 1. If we try to use the above recurrence relation for the
case r2 = −1, we find that an(−1) = −an−1/n(n− 1), which is undefined for n =
1. Thus we must follow the procedure described at the end of Section 5.6 to
calculate a second solution of the form given in Equation (24). Specifically, we use
Equations (19) and (20) of Section 5.6 to calculate a and cn(r2), where r2 = −1.
Since r1 − r2 = 1 = N , we have aN (r) = a1(r) = −1/F (r + 1), with a0 = 1. Hence

a = lim
r→−1

[(r + 1)(−1)/F (r + 1)] = lim
r→−1

[−(r + 1)/(r + 1)(r + 2)] = −1.
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Next,

cn(−1) =
d

dr
[(r + 1)an(r)]|r=−1 = (−1)n

d

dr

[
r + 1

F (r + 1) . . . F (r + n)

]
|r=−1

where we again have set a0 = 1. Observe that

(r + 1)/F (r + 1) . . . F (r + n) = 1/[(r + 2)2(r + 3)2 . . . (r + n)2(r + n+ 1)] = 1/Gn(r).

Hence cn(−1) = (−1)n+1G′n(−1)/G2
n(−1). ThenGn(−1) = 12 · 22 · 32 . . . (n− 1)2n =

(n− 1)!n! andG′n(−1)/Gn(−1) = 2[1/1 + 1/2 + 1/3 + . . .+ 1/(n− 1)] + 1/n = Hn +
Hn−1. Thus cn(−1) = (−1)n+1(Hn +Hn−1)/(n− 1)!n!. From Equation (24) of
Section 5.6 we obtain the second solution

y2(x) = −y1(x) lnx+ x−1

[
1−

∞∑
n=1

(−1)n(Hn +Hn−1)xn/n!(n− 1)!

]
.

2. It is clear that x = 0 is a singular point. The D.E. is in the standard form given
in Theorem 5.6.1 with xp(x) = 3 and x2q(x) = 1 + x. Both are analytic at x = 0,
so x = 0 is a regular singular point. Substituting

y =

∞∑
n=0

anx
n+r

in the D.E., shifting indices appropriately, and collecting coefficients of like powers
of x yields

[r(r − 1) + 3r + 1]a0x
r +

∞∑
n=1

{[(r + n)(r + n+ 2) + 1]an + an−1}xn+r = 0.

The indicial equation is F (r) = r2 + 2r + 1 = (r + 1)2 = 0 with the double root
r1 = r2 = −1. Treating an as a function of r, we can see immediately that an(r) =
−an−1(r)/F (r + n), n = 1, 2, . . .. Thus we obtain that a1(r) = −a0/F (r + 1), then
a2(r) = a0/F (r + 1)F (r + 2), . . . , an(r) = (−1)na0/F (r + 1)F (r + 2) . . . F (r + n).
Setting r = −1, we find that an(−1) = (−1)na0/(n!)2, n = 1, 2, . . .. Hence one so-
lution is

y1(x) = x−1
∞∑
n=0

(−1)nxn/(n!)2

where we have set a0 = 1. To find a second solution we follow the procedure de-
scribed in Section 5.6 for the case when the roots of the indicial equation are equal.
Specifically, the second solution will have the form given in Eq. (17) of that sec-
tion. We must calculate a′n(−1). Let us denote Gn(r) = F (r + 1) . . . F (r + n) =
(r + 2)2(r + 3)2 . . . (r + n+ 1)2 and take a0 = 1, then a′n(−1) = (−1)n/[1/Gn(r)]′

evaluated at r = −1. Hence a′n(−1) = (−1)n+1G′n(−1)/G2
n(−1). But Gn(−1) =

(n!)2 and G′n(−1)/Gn(−1) = 2[1/1 + 1/2 + 1/3 + . . .+ 1/n] = 2Hn. Thus a sec-
ond solution is

y2(x) = y1(x) lnx− 2x−1
∞∑
n=1

(−1)nHnx
n/(n!)2.
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5. Since x = 0 is a regular singular point, substitute

y =

∞∑
n=0

anx
n+r

in the differential equation, shift indices appropriately, and collect coefficients of
like powers of x to obtain

[r2 − 9/4]a0x
r + [(r + 1)2 − 9/4]a1x

r+1+

+

∞∑
n=2

{
[(r + n)2 − 9/4]an + an−2

}
xn+r = 0.

The indicial equation is F (r) = r2 − 9/4 = 0 with roots r1 = 3/2, r2 = −3/2. Treat-
ing an as a function of r, we see that an(r) = −an−2(r)/F (r + n), n = 2, 3, . . . if
F (r + n) 6= 0. For the case r1 = 3/2, F (r1 + 1), which is the coefficient of xr1+1,
is 6= 0 so we must set a1 = 0. It follows that a3 = a5 = . . . = 0. For the even coef-
ficients, set n = 2m so a2m(3/2) = a2m−2(3/2)/F (3/2 + 2m) = −a2m−2/22m(m+
3/2), m = 1, 2, . . .. Thus a2(3/2) = −a0/22 · 1(1 + 3/2), a4(3/2) = a0/2

4 · 2!(1 +
3/2)(2 + 3/2), . . ., and a2m(3/2) = (−1)m/22mm!(1 + 3/2) . . . (m+ 3/2). Hence one
solution is

y1(x) = x3/2

[
1 +

∞∑
m=1

(−1)m

m!(1 + 3/2)(2 + 3/2) . . . (m+ 3/2)

(x
2

)2m]
,

where we have set a0 = 1. For this problem, the roots r1 and r2 of the indicial
equation differ by an integer: r1 − r2 = 3. Hence we can anticipate that there may
be difficulty in calculating a second solution corresponding to r = r2. This diffi-
culty will occur in calculating a3(r) = −a1(r)/F (r + 3) since when r = r2 = −3/2
we have F (r2 + 3) = F (r1) = 0. However, in this problem we are fortunate because
a1 = 0 and it will not be necessary to use the theory described at the end of Sec-
tion 5.6. Notice for r = r2 − 3/2 that the coefficient of xr2+1 is [(r2 + 1)2 − 9/4]a1,
which does not vanish unless a1 = 0. Thus the recurrence relation for the odd
coefficients yields a5 = −a3/F (7/2), a7 = −a5/F (11/2) = a3/F (11/2)F (7/2), and
so forth. Substituting these terms into the assumed form, we see that a multiple
of y1(x) has been obtained and thus we may take a3 = 0 without loss of general-
ity. Hence a3 = a5 = a7 = . . . = 0. The even coefficients are given by a2m(−3/2) =
−a2m−2(−3/2)/F (2m− 3/2), m = 1, 2, . . .. Thus a2(−3/2) = −a0/22 · 1 · (1− 3/2),
a4(−3/2) = a0/2

4 · 2!(1− 3/2)(2− 3/2), . . ., and a2m(−3/2) = (−1)ma0/2
2mm!(1−

3/2)(2− 3/2) . . . (m− 3/2). Thus a second solution is

y2(x) = x−3/2

[
1 +

∞∑
m=1

(−1)m

m!(1− 3/2)(2− 3/2) . . . (m− 3/2)

(x
2

)2m]
.

7. Apply the ratio test:

lim
m→∞

|(−1)m+1x2m+2/22m+2[(m+ 1)!]2|
|(−1)mx2m/22m(m!)2|

= |x2| lim
m→∞

1

22(m+ 1)2
= 0

for every x. Thus the series for J0(x) converges absolutely for all x.
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12. Consider a solution of the form y(x) =
√
x f(αxβ). Then

y ′ =
df

dξ
· αβ x

β

√
x

+
f(ξ)

2
√
x

in which ξ = αxβ . Hence

y ′′ =
d2f

dξ2
· α

2β2 x2β

x
√
x

+
df

dξ
· αβ

2 xβ

x
√
x
− f(ξ)

4x
√
x

,

and

x2 y ′′ = α2β2 x2β
√
x
d2f

dξ2
+ αβ2 xβ

√
x
df

dξ
− 1

4

√
x f(ξ) .

Substitution into the ODE results in

α2β2 x2β
d2f

dξ2
+ αβ2 xβ

df

dξ
− 1

4
f(ξ) + (α2β2 x2β +

1

4
− ν2β2)f(ξ) = 0 .

Simplifying, and setting ξ = αxβ , we find that

ξ2
d2f

dξ2
+ ξ

df

dξ
+ (ξ2 − ν2)f(ξ) = 0 , (∗)

which is a Bessel equation of order ν . Therefore, the general solution of the given
ODE is

y(x) =
√
x
[
c1 f1(αxβ) + c2 f2(αxβ)

]
,

in which f1(ξ) and f2(ξ) are the linearly independent solutions of (∗).

13. To compare y′′ − xy = 0 with the differential equation of Problem 12, we must
multiply by x2 to get x2y′′ − x3y = 0. Thus 2β = 3, α2β2 = −1 and 1/4− ν2β2 =
0. Hence β = 3/2, α = 2i/3, and ν2 = 1/9, which yields the desired result.

14. First we verify that J0(λjx) satisfies the D.E. We know that J0(t) is a solution
of the Bessel equation of order zero:

t2J ′′0 (t) + tJ ′0(t) + t2J0(t) = 0 or

J ′′0 (t) + t−1J ′0(t) + J0(t) = 0.

Let t = λjx. Then

d

dx
J0(λjx) =

d

dt
J0(t)

dt

dx
= λjJ

′
0(t),

d2

dx2
J0(λjx) = λj

d

dt
[J ′0(t)]

dt

dx
= λ2jJ

′′
0 (t).

Substituting y = J0(λjx) in the given D.E. and making use of these results, we have

λ2jJ
′′
0 (t) + (λj/t)λjJ

′
0(t) + λ2jJ0(t) = λ2j

[
J ′′0 (t) + t−1J ′0(t) + J0(t)

]
= 0.

Thus y = J0(λjx) is a solution of the given D.E. For the second part of the problem
we follow the hint. First, rewrite the D.E. by multiplying by x to yield xy′′ + y′ +
λ2jxy = 0, which can be written as (xy′)′ = −λ2jxy. Now let yi(x) = J0(λix) and

yj(x) = J0(λjx) and we have, respectively, (xy′i)
′ = −λ2ixyi and (xy′j)

′ = −λ2jxyj .
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Now, multiply the first equation by yj , the second by yi, integrate each from 0 to
1, and subtract the second from the first:∫ 1

0

[
yj (xy′i)

′ − yi
(
xy′j
)′]

dx = −
(
λ2i − λ2j

) ∫ 1

0

xyiyjdx.

If we integrate each term on the left side once by parts and note that yi = yj = 0
and x = 1, we find that the left side of this equation is identically zero. Hence the
right side is identically zero and for λi 6= λj this gives the desired result.
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