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C H A P T E R

7

Systems of First Order Linear

Equations

7.1

2. As in Example 1, let x1 = u and x2 = u′. Then x′1 = x2 and x′2 = u′′ = 3 sin t−
0.5u′ − 2u = −2x1 − 0.5x2 + 3 sin t.

4. In this case let x1 = u, x2 = u′, x3 = u′′, and x4 = u′′′. The last equation gives
x′4 = x1.

6. Let x1 = u and x2 = u′; then x′1 = x2 is the first of the desired pair of equations.
The second equation is obtained by substituting u′′ = x′2, u′ = x2, and u = x1 in the
given differential equation. The initial conditions become x1(0) = u0, x2(0) = u′0.

8.(a) We follow the steps outlined in Problem 7. Solving the first equation for x2
gives x2 = (3/2)x1 − x′1/2, substituting this into the second differential equation
we obtain (3/2)x′1 − x′′1/2 = 2x1 − 2(3x1/2− x′1/2), i.e. x′′1 = x′1 + 2x1, which is
the same as x′′1 − x′1 − 2x1 = 0.

(b) The general solution of the second order differential equation in part (a) is
x1 = c1e

2t + c2e
−t. Differentiating this and substituting into the above equation

for x2 yields x2 = c1e
2t/2 + 2c2e

−t. The initial conditions then give c1 + c2 = 3
and c1/2 + 2c2 = 1/2. This implies that c1 = 11/3 and c2 = −2/3. Thus x1 =
(11e2t − 2e−t)/3 and x2 = (11e2t − 8e−t)/6.
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(c)

9.(a) Solving the first equation for x2 gives x2 = (4/3)x′1 − (5/3)x1, substituting
this into the second differential equation we obtain (4/3)x′′1 − (5/3)x′1 = (3/4)x1 +
(5/4)((4/3)x′1 − (5/3)x1), i.e. (4/3)x′′1 = (10/3)x′1 − (4/3)x1, which is the same as
x′′1 − (5/2)x′1 + x1 = 0.

(b) From part (a), x1 = c1e
t/2 + c2e

2t and x2 = −c1et/2 + c2e
2t. Using the initial

conditions yields c1 = −3/2 and c2 = −1/2. Thus x1 = −(3/2)et/2 − (1/2)e2t and
x2 = (3/2)et/2 − (1/2)e2t.

(c)

12.(a) Solving the first equation for x2 , we obtain x2 = x ′1/2 + x1/4 . Substitution
into the second equation results in x ′′1 /2 + x ′1/4 = −2x1 − (x ′1/2 + x1/4)/2. Rear-
ranging the terms, the single differential equation for x1 is x ′′1 + x ′1 + (17/4)x1 = 0.

(b) The general solution is x1(t) = e−t/2 [c1 cos 2t+ c2 sin 2t]. With x2 given in
terms of x1, it follows that x2(t) = e−t/2 [c2 cos 2t− c1 sin 2t]. Imposing the spec-
ified initial conditions, we obtain c1 = −2 and c2 = 2. This implies that x1(t) =
e−t/2 [−2 cos 2t+ 2 sin 2t] and x2(t) = e−t/2 [2 cos 2t+ 2 sin 2t].
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(c)

14. If a12 6= 0, then solve the first equation for x2, obtaining x2 = (x′1 − a11x1 −
g1(t))/a12. Upon substituting this expression into the second equation, we have
a second order linear differential equation for x1. One initial condition is x1(0) =
x01. The second initial condition is x2(0) = (x′1(0)− a11x1(0)− g1(0))/a12 = x02.
Solving for x′1(0) gives x′1(0) = a12x

0
2 + a11x

0
1 + g1(0). If a12 = 0, then solve the

second equation for x1 and proceed as above. These results hold when a11, . . . , a22
are functions of t as long as the derivatives exist and a12(t) and a21(t) are not both
zero on the interval. The initial conditions will involve a11(0) and a12(0).

20. Let I1, I2, I3 and I4 be the current through the 1 ohm resistor, 2 ohm resistor,
inductor and capacitor, respectively. Assign V1, V2, V3 and V4 as the respective
voltage drops. Based on Kirchhoff’s second law, the net voltage drops around each
loop satisfy

(1) V1 + V3 + V4 = 0, (2) V1 + V3 + V2 = 0 and (3) V4 − V2 = 0.

Applying Kirchhoff’s first law to the upper right node, we have

(4) I1 − I3 = 0.

Likewise, in the remaining nodes, we have

(5) I2 + I4 − I1 = 0 and (6) I3 − I4 − I2 = 0.

Using the current-voltage relations, we have

(7) V1 = R1I1, (8) V2 = R2I2, (9) LI ′3 = V3, (10) CV ′4 = I4.

Using equations (1) and (6) with substitutions from equations (3) and (4) and
utilizing the current-voltage relations we obtain the two equations

R1I3 + LI ′3 + V4 = 0 and CV ′4 = I3 −
1

R2
V4.

Now set I3 = I and V4 = V , to obtain the system of equations

LI ′ = −R1I − V and CV ′ = I − 1

R2
V.
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Finally, using the fact that R1 = 1, R2 = 2, L = 1 and C = 1/2, we have

I ′ = −I − V and V ′ = 2I − V,

as claimed.

22.(a) Let Q1(t) and Q2(t) be the amount of salt in the respective tanks at time t.
Based on conservation of mass, the rate of increase of salt is given by

rate of increase = rate in− rate out.

For Tank 1, the rate of salt flowing in from Tank 2 is (Q2/20) · 1.5 = .075Q2

ounces/minute. In addition, salt is flowing in from a separate source at the rate of
1.5 ounces/minute. Therefore, the rate of salt flowing in to Tank 1 is rin = .075Q2 +
1.5. The rate of flow out of Tank 1 is rout = (Q1/30) · 3 = 0.1Q1 ounces/minute.
Therefore,

dQ1

dt
= −0.1Q1 + .075Q2 + 1.5.

Similarly, for Tank 2, salt is flowing in from Tank 1 at the rate of (Q1/30) · 3 = 0.1
oz/min. In addition, salt is flowing in from a separate source at the rate of 3 oz/min.
Also, salt is flowing out of Tank 2 at the rate of 4Q2/20 = .2Q2 oz/min. Therefore,

dQ2

dt
= 0.1Q1 − 0.2Q2 + 3.

The initial conditions are Q1(0) = 25 and Q2(0) = 15.

(b) Solve the second equation for Q1(t) to obtain Q1(t) = 10Q′2 + 2Q2 − 30. Substi-
tution into the first equation then yields 10Q′′2 + 3Q′2 +Q2/8 = 9/2. Equilibrium is
the steady state solution, which is QE2 = 8(9/2) = 36. Substituting this value into
the equation for Q1 yields QE1 = 72− 30 = 42. It can be shown that Q1(t) satisfies
the same second order differential equation as Q2(t) (except with the constant 21/4
on the right side) and thus the exponentials in the solutions for each are the same.
Hence each tank approaches the equilibrium solution at the same rate.

(c) Substitute Q1 = x1 + 42 and Q2 = x2 + 36 into the equations found in part (a).

7.2

1.(a)

2A + B =

 2 + 4 −4− 2 0 + 3
6− 1 4 + 5 −2 + 0
−4 + 6 2 + 1 6 + 2

 =

 6 −6 3
5 9 −2
2 3 8

 .

(b)

A− 4B =

 1− 16 −2 + 8 0− 12
3 + 4 2− 20 −1 + 0

−2− 24 1− 4 3− 8

 =

 −15 6 −12
7 −18 −1

−26 −3 −5

 .
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(c)

AB =

 4 + 2 + 0 −2− 10 + 0 3 + 0 + 0
12− 2− 6 −6 + 10− 1 9 + 0− 2
−8− 1 + 18 4 + 5 + 3 −6 + 0 + 6

 =

 6 −12 3
4 3 7
9 12 0

 .

(d)

BA =

 4− 6− 6 −8− 4 + 3 0 + 2 + 9
−1 + 15 + 0 2 + 10 + 0 0− 5 + 0

6 + 3− 4 −12 + 2 + 2 0− 1 + 6

 =

 −8 −9 11
14 12 −5
5 −8 5

 .

6.(a)

AB =

 6 −5 −7
1 9 1
−1 −2 8

 and BC =

 5 3 3
−1 7 3

2 3 −2

 .

so that

(AB)C = A(BC) =

 7 −11 −3
11 20 17
−4 3 −12

 .

(b)

A + B =

 3 −1 −1
1 5 2
−1 0 5

 and B + C =

 4 2 −1
−1 5 5

1 1 1

 .

so that

(A + B) + C = A + (B + C) =

 5 0 −1
2 7 4
−1 1 4

 .

(c)

A(B + C) = AB + AC =

 6 −8 −11
9 15 6
−5 −1 5

 .

10. First augment the given matrix by the identity matrix:

[A | I ] =

(
1 4 1 0
−2 3 0 1

)
.

Add 2 times the first row to the second row:(
1 4 1 0
0 11 2 1

)
.

Multiply the second row by 1/11:(
1 4 1 0
0 1 2/11 1/11

)
.
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Add −4 times the second row to the first row:(
1 0 3/11 −4/11
0 1 2/11 1/11

)
.

Hence (
1 4
−2 3

)−1
=

1

11

(
3 −4
2 1

)
.

The answer can be checked by multiplying it by the given matrix; the result should
be the identity matrix.

12. The augmented matrix is1 2 3 1 0 0
2 4 5 0 1 0
3 5 6 0 0 1

 .

Add −2 times the first row to the second row and −3 times the first row to the
third row: 1 2 3 1 0 0

0 0 −1 −2 1 0
0 −1 −3 −3 0 1

 .

Multiply the second and third rows by −1 and interchange them:1 2 3 1 0 0
0 1 3 3 0 −1
0 0 1 2 −1 0

 .

Add −3 times the third row to the first and second rows:1 2 0 −5 3 0
0 1 0 −3 3 −1
0 0 1 2 −1 0

 .

Add −2 times the second row to the first row:1 0 0 1 −3 2
0 1 0 −3 3 −1
0 0 1 2 −1 0

 .

Hence 1 2 3
2 4 5
3 5 6

−1 =

 1 −3 2
−3 3 −1
2 −1 0

 .

The answer can be checked by multiplying it by the given matrix; the result should
be the identity matrix.

14. The augmented matrix is 1 2 1 1 0 0
−2 1 8 0 1 0
1 −2 −7 0 0 1

 .
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Add 2 times the first row to the second row and add −1 times the first row to the
third row: 1 2 1 1 0 0

0 5 10 2 1 0
0 −4 −8 −1 0 1

 .

Add 4/5 times the second row to the third row:1 2 1 1 0 0
0 5 10 2 1 0
0 0 0 3/5 4/5 0

 .

Since the third row of the left matrix is all zeros, no further reduction can be
performed, and the given matrix is singular.

21.(a)

A + 3B =

 et 2e−t e2t

2et e−t −e2t
−et 3e−t 2e2t

+

 6et 3e−t 9e2t

−3et 6e−t 3e2t

9et −3e−t −3e2t

 =

7et 5e−t 10e2t

−et 7e−t 2e2t

8et 0 −e2t

 .

(b) Based on the standard definition of matrix multiplication,

AB =

 2e2t − 2 + 3e3t 1 + 4e−2t − et 3e3t + 2et − e4t
4e2t − 1− 3e3t 2 + 2e−2t + et 6e3t + et + e4t

−2e2t − 3 + 6e3t −1 + 6e−2t − 2et −3e3t + 3et − 2e4t

 .

(c)

dA

dt
=

 et −2e−t 2e2t

2et −e−t −2e2t

−et −3e−t 4e2t

 .

(d) Note that ∫
A(t)dt =

 et −2e−t e2t/2
2et −e−t −e2t/2
−et −3e−t e2t

+ C.

Therefore ∫ 1

0

A(t)dt =

 e −2e−1 e2/2
2e −e−1 −e2/2
−e −3e−1 e2

−
 1 −2 1/2

2 −1 −1/2
−1 −3 1

 =

=

 e− 1 2− 2e−1 e2/2− 1/2
2e− 2 1− e−1 1/2− e2/2
1− e 3− 3e−1 e2 − 1

 .

The result can also be written as

(e− 1)

 1 2/e 1
2 (e+ 1)

2 1/e − 1
2 (e+ 1)

−1 3/e e+ 1

 .
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22. We compute:

x ′ =

(
4
2

)
2e2t =

(
8
4

)
e2t;

also, (
3 −2
2 −2

)
x =

(
3 −2
2 −2

)(
4
2

)
e2t =

(
8
4

)
e2t.

25. Differentiation, elementwise, results in

Ψ ′ =

(
−3e−3t 2e2t

12e−3t 2e2t

)
.

On the other hand,(
1 1
4 −2

)
Ψ =

(
1 1
4 −2

)(
e−3t e2t

−4e−3t e2t

)
=

(
−3e−3t 2e2t

12e−3t 2e2t

)
.

7.3

1. The augmented matrix is  1 0 −1 | 0
3 1 1 | 1
−1 1 2 | 2

 .

Adding −3 times the first row to the second row and adding the first row to the
third row results in 1 0 −1 | 0

0 1 4 | 1
0 1 1 | 2

 .

Adding −1 times the second row to the third row results in1 0 −1 | 0
0 1 4 | 1
0 0 −3 | 1

 .

The third row is equivalent to −3x3 = 1 or x3 = −1/3. Likewise the second row is
equivalent to x2 + 4x3 = 1, so x2 = 7/3. Finally, from the first row, x1 − x3 = 0, so
x1 = −1/3. The answer can be checked by substituting into the original equations.

2. The augmented matrix is 1 2 −1 | 1
2 1 1 | 1
1 −1 2 | 1

 .
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Adding −2 times the first row to the second row and adding −1 times the first row
to the third row results in 1 2 −1 | 1

0 −3 3 | −1
0 −3 3 | 0

 .

Adding −1 times the second row to the third row results in1 2 −1 | 1
0 −3 3 | −1
0 0 0 | 1

 .

This means we need 0x1 + 0x2 + 0x3 = 1, thus there is no solution.

3. The augmented matrix is 1 2 −1 | 2
2 1 1 | 1
1 −1 2 | −1

 .

Adding −2 times the first row to the second row and subtracting the first row from
the third row results in 1 2 −1 | 2

0 −3 3 | −3
0 −3 3 | −3

 .

Adding −1 times the second row to the third row and then multiplying the second
row by −1/3 results in 1 2 −1 | 2

0 1 −1 | 1
0 0 0 | 0

 .

We evidently end up with an equivalent system of equations

x1 + 2x2 − x3 = 2

x2 − x3 = 1 .

Since there is no unique solution, let x3 = α , where α is arbitrary. It follows
that x2 = 1 + α, and then x1 = 2− 2x2 + x3 = 2− 2(1 + α) + α = −α. Hence all
solutions have the form

x =

 −α1 + α
α

 =

0
1
0

+ α

−1
1
1

 ,

where the first vector on the right is a solution of the given nonhomogeneous equa-
tion and the second vector is a solution of the related homogeneous equation.

7. Write the given vectors as columns of the matrix

X =

1 0 1
1 1 0
0 1 1

 .

We find that det(X) = 2 6= 0, hence the vectors are linearly independent.
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9. We wish to solve the system c1x
(1) + c2x

(2) + c3x
(3) + c4x

(4) = 0. Form the
augmented matrix and use row reduction:

1 −1 −2 −3 | 0
2 0 −1 0 | 0
2 3 1 −1 | 0
3 1 0 3 | 0

 .

Add −2 times the first row to the second, add −2 times the first row to the third,
and add −3 times the firts row to the fourth:

1 −1 −2 −3 | 0
0 2 3 6 | 0
0 5 5 5 | 0
0 4 6 12 | 0

 .

Multiply the second row by 1/2 and then add −5 times the second row to the third
row and add −4 times the second row to the fourth:

1 −1 −2 −3 | 0
0 1 3/2 3 | 0
0 0 −5/2 −10 | 0
0 0 0 0 | 0

 .

Choose now c4 = −1 for example (any nonzero number is suitable). Then by the
third row of the matrix c3 = 4. From the second row we have c2 = −(3/2)c3 − 3c4 =
−3. From the first row c1 = c2 + 2c3 + 3c4 = 2. Hence the given vectors are linearly
dependent and 2x(1) − 3x(2) + 4x(3)−x(4) = 0.

13. By inspection, we find that

x(1)(t)− 2x(2)(t) =

(
−e−t

0

)
.

Hence 3 x(1)(t)− 6 x(2)(t)+x(3)(t) = 0 , and the vectors are linearly dependent.

14. Two vectors are linearly dependent if and only if one is a nonzero scalar
multiple of the other. However, there is no nonzero scalar c such that 2 sin t =
c sin t and sin t = 2c sin t for all t ∈ (−∞ ,∞). Therefore the vectors are linearly
independent.

15. Let t = t0 be a fixed value of t in the interval 0 ≤ t ≤ 1. We can easily check that
1x(1) − et0x(2) = 0 and hence the given vectors are linearly dependent at each point
of the interval. However, there is clearly no nonzero scalar c such that et = c · 1
and tet = ct on the whole interval 0 ≤ t ≤ 1. So the given vectors are linearly
independent on 0 ≤ t ≤ 1.

16. The eigenvalues λ and eigenvectors x satisfy the equation(
5− λ −1

3 1− λ

)(
x1
x2

)
=

(
0

0

)
.
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For a nonzero solution, we must have (5− λ)(1− λ) + 3 = 0 , that is, λ2 − 6λ+ 8 =
0. The eigenvalues are λ1 = 2 and λ2 = 4. The components of the eigenvector x(1)

are solutions of the system (
3 −1
3 −1

)(
x1
x2

)
=

(
0

0

)
.

The two equations reduce to 3x1 = x2 . Hence x(1) = (1 , 3)T , or any constant
multiple of this vector. Now setting λ = λ2 = 4, we have(

1 −1
3 −3

)(
x1
x2

)
=

(
0

0

)
,

with solution given by x(2) = (1 , 1)T , or a multiple of thereof.

19. Since a12 = a21, the given matrix is Hermitian and we know in advance that
its eigenvalues are real. The eigenvalues λ and eigenvectors x satisfy the equation(

1− λ i
−i 1− λ

)(
x1
x2

)
=

(
0

0

)
.

For a nonzero solution, we must have (1− λ)(1− λ)− 1 = 0 , that is,

λ2 − 2λ = 0 .

The eigenvalues are λ1 = 0 and λ2 = 2. For λ1 = 0, the system of equations becomes(
1 i
−i 1

)(
x1
x2

)
=

(
0

0

)
,

which reduces to x1 + ix2 = 0 . A solution vector is given by x(1) = (1 , i)T . Sub-
stituting λ = λ2 = 2, we have(

−1 i
−i −1

)(
x1
x2

)
=

(
0

0

)
.

The equations reduce to x1 = ix2 . So a solution vector is given by x(2) = (1 ,−i)T .

22. The eigensystem is obtained from analysis of the equation1− λ 0 0
2 1− λ −2
3 2 1− λ

x1x2
x3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is (1− λ)((1− λ)2 + 4) = 0 ,
with roots λ = 1, 1± 2i. Setting λ = 1 , we have0 0 0

2 0 −2
3 2 0

x1x2
x3

 =

0
0
0

 .

This system gives the equations x1 − x3 = 0 and 3x1 + 2x2 = 0. A corresponding
solution vector is given by x(1) = (2 ,−3 , 2)T . Setting λ = 1 + 2i , the reduced
system of equations is −2ix1 = 0, 2x1 − 2ix2 − 2x3 = 0 and 3x1 + 2x2 − 2ix3 = 0,
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yielding x1 = 0 and x3 = −ix2. Thus x(2) = (0 , 1 ,−i)T is the eigenvector corre-
sponding to λ = 1 + 2i. A similar calculation yields x(3) = (0 , 1 , i)T as the eigen-
vector corresponding to λ = 1− 2i.

25. Since the given matrix is real and symmetric, we know that the eigenvalues
are real. Further, even if there are repeated eigenvalues, there will be a full set of
three linearly independent eigenvectors. The eigensystem is obtained from analysis
of the equation 3− λ 2 4

2 −λ 2
4 2 3− λ

x1x2
x3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is (3− λ)(−λ(3− λ)− 4)−
2(2(3− λ)− 8) + 4(4 + 4λ) = −λ3 + 6λ2 + 15λ+ 8 = 0 , with roots λ1 = −1 , λ2 =
−1 and λ3 = 8 . Setting λ = −1 , we have4 2 4

2 1 2
4 2 4

x1x2
x3

 =

0
0
0

 .

This system is reduced to the single equation 2x1 + x2 + 2x3 = 0. Consequently,
two of the three variables can be selected arbitrarily and the third is determined
by the equation. For example, choosing x1 = 1 and x3 = 1 gives x2 = −4 and
choosing x1 = 1 and x2 = 0 gives x3 = −1. These produce two linearly indepen-
dent eigenvectors corresponding to −1: x(1) = (1 ,−4 , 1)T and x(2) = (1 , 0 ,−1)T .
Setting λ = λ3 = 8 , the reduced system of equations is x1 − 4x2 + x3 = 0 and
2x2 − x3 = 0. A corresponding solution vector is given by x(3) = (2 , 1 , 2)T .

28. We are given that Ax = b has solutions and thus we have (Ax,y) = (b,y).
Using A∗y = 0 and the result of Problem 26, we have (Ax,y) = (x,A∗y) = 0.
Thus (b,y) = 0. For Example 2, since A is real,

A∗ = AT =

 1 −1 2
−2 1 −1
3 −2 3

 ,

and using row reduction, the augmented matrix for A∗y = 0 becomes1 −1 2 | 0
0 1 −3 | 0
0 0 0 | 0

 .

Thus y = c(1, 3, 1)T and hence (b,y) = b1 + 3b2 + b3 = 0.

7.4

1. Use mathematical induction. It has already been proven that if x(1) and x(2)

are solutions, then so is c1x
(1) + c2x

(2). Assume that if x(1),x(2), . . . ,x(k) are so-
lutions, then x = c1x

(1) + . . .+ ckx
(k) is a solution. Then use Theorem 7.4.1 to
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conclude that x + ck+1x
(k+1) is also a solution and thus c1x

(1) + . . .+ ck+1x
(k+1)

is a solution if x(1), . . . ,x(k+1) are solutions.

2.(a) From Eq.(10) we have

W =

∣∣∣∣∣ x(1)1 x
(2)
1

x
(1)
2 x

(2)
2

∣∣∣∣∣ = x
(1)
1 x

(2)
2 − x

(1)
2 x

(2)
1 .

Taking the derivative of these two products yields four terms which can be written
as

dW

dt
= (

dx
(1)
1

dt
x
(2)
2 − x

(1)
2

dx
(2)
1

dt
) + (x

(1)
1

dx
(2)
2

dt
− dx

(1)
2

dt
x
(2)
1 ).

The terms in brackets can now be recognized as the respective determinants ap-
pearing in the desired result. A similar result was obtained in Problem 20 of Section
4.1.

(b) If x
(1)
1 is substituted into Eq.(3) we have

dx
(1)
1

dt
= p11x

(1)
1 + p12x

(1)
2 and

dx
(1)
2

dt
= p21x

(1)
1 + p22x

(1)
2 .

Substituting the first equation above and its counterpart for x(2) into the first
determinant appearing in dW/dt and evaluating the result yields

p11

∣∣∣∣∣ x(1)1 x
(2)
1

x
(1)
2 x

(2)
2

∣∣∣∣∣ = p11W.

Similarly, the second determinant in dW/dt is evaluated as p22W , yielding the
desired result.

(c) From part (b) we have dW/W = (p11(t) + p22(t))dt, soW (t) = ce
∫
(p11(t)+p22(t)) dt.

(d) Follow the steps in parts (a), (b), and (c).

6.(a)

W =

∣∣∣∣ t t2

1 2t

∣∣∣∣ = 2t2 − t2 = t2.

(b) Pick t = t0, then c1x
(1)(t0) + c2x

(2)(t0) = 0 implies c1t0 + c2t
2
0 = 0 and c1 +

2c2t0 = 0, which has a no-zero solution for c1 and c2 if and only if t0 · 2t0 − 1 · t20 =
t20 = 0. Thus x(1)(t) and x(2)(t) are linearly independent at each point except at
t = 0. Thus they are linearly independent on every interval.

(c) From part (a) we see that the Wronskian vanishes at t = 0, but not at any other
point. By Theorem 7.4.3, if P(t), from Eq.(3) is continuous, then the Wronskian is
either identically zero or else never vanishes. Hence we conclude that the differen-
tial equation satisfied by x(1)(t) and x(2)(t) must have at least one discontinuous
coefficient at t = 0.
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(d) To obtain the system satisfied by x(1)(t) and x(2)(t) we consider x = c1x
(1)(t) +

c2x
(2)(t), or x1 = c1t+ c2t

2 and x2 = c1 + c22t. Taking the derivatives of these we
obtain x′1 = c1 + 2c2t and x′2 = 2c2. Solving these for c1 and c2 we get c1 = x′1 − tx′2
and c2 = x′2/2. Thus x1 = tx′1 − (t2/2)x′2 and x2 = x′1. Writing this system in
matrix form we have

x =

(
t −t2/2
1 0

)
x′.

Finding the inverse of the matrix multiplying x′ yields the desired solution. Note
that at t = 0 two of the elements of P(t) are discontinuous.

7.5

1. Assuming that there are solutions of the form x= ξ ert, we substitute into the
differential equation to find

rξ ert =

(
3 −2
2 −2

)
ξ ert.

Since

ξ = Iξ =

(
1 0
0 1

)
ξ,

we can write this equation (after dividing by the nonzero expression ert) as(
3 −2
2 −2

)
ξ − r

(
1 0
0 1

)
ξ = 0

and thus we must solve the algebraic equations(
3− r −2

2 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
for r, ξ1 and ξ2. (Subsequent problems will be solved by the same method.) For
a nonzero solution, we must have det(A− rI) = r2 − r − 2 = 0 . The roots of the
characteristic equation are the eigenvalues of the matrix: r1 = −1 and r2 = 2. For
r = −1, the two equations reduce to 2ξ1 = ξ2. The corresponding eigenvector is
ξ(1) = (1, 2)T . Substitution of r = 2 results in the single equation ξ1 = 2ξ2. A

corresponding eigenvector is ξ(2) = (2, 1)T . Since the eigenvalues are distinct, the
general solution is

x = c1

(
1

2

)
e−t + c2

(
2

1

)
e2t.

If the initial condition is a multiple of (1, 2)T , then the solution will tend to the
origin along the eigenvector (1, 2)T . For c2 6= 0 all other solutions will tend to
infinity asymptotic to the eigenvector (2, 1)T .
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(b)

5.(a) Setting x= ξ ert, and substituting into the ODE, we obtain the algebraic
equations (

−2− r 1
1 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 + 4r + 3 = 0 . The roots of
the characteristic equation are r1 = −1 and r2 = −3. For r = −1, the two equations
reduce to ξ1 = ξ2. The corresponding eigenvector is ξ(1) = (1, 1)T . Substitution of
r = −3 results in the single equation ξ1 + ξ2 = 0. A corresponding eigenvector is
ξ(2) = (1,−1)T . Since the eigenvalues are distinct, the general solution is

x = c1

(
1

1

)
e−t + c2

(
1

−1

)
e−3t.

If the initial condition is a multiple of (1,−1)T , then the solution will tend to the
origin along the eigenvector (1,−1)T . Since e−t is the dominant term as t→∞,
as long as c1 6= 0, all trajectories approach the origin asymptotic to the eigenvector
(1, 1)T .

(b)
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6.(a) Setting x= ξ ert, and substituting into the ODE, we obtain the algebraic
equations (

5/4− r 3/4
3/4 5/4− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 + (5/2)r + 1 = 0 . The roots
of the characteristic equation are r1 = 2 and r2 = 1/2. For r = 2, the two equations

reduce to ξ1 = ξ2. The corresponding eigenvector is ξ(1) = (1, 1)T . Substitution of
r = 1/2 results in the single equation ξ1 + ξ2 = 0. A corresponding eigenvector is

ξ(2) = (1,−1)T . Since the eigenvalues are distinct, the general solution is

x = c1

(
1

1

)
e2t + c2

(
1

−1

)
et/2.

The behavior of the solutions is similar to Problem 5, except the trajectories are
reversed, since the roots are positive.

(b)

7.(a) Setting x= ξ ert results in the algebraic equations(
4− r −3

8 −6− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 + 2r = 0. The roots of
the characteristic equation are r1 = −2 and r2 = 0. With r = −2, the system of
equations reduces to 6ξ1 − 3ξ2 = 0. The corresponding eigenvector is ξ(1) = (1, 2)T .
For the case r = 0, the system is equivalent to the equation 4ξ1 − 3ξ2 = 0. An
eigenvector is ξ(2) = (3, 4)T . Since the eigenvalues are distinct, the general solution
is

x = c1

(
1

2

)
e−2t + c2

(
3

4

)
.
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(b)

The entire line along the eigendirection ξ(2) = (3, 4)T consists of constant solutions.
All other solutions converge. The direction field changes across the line 4x1 − 3x2 =
0. Eliminating the exponential terms in the solution, the trajectories are given by
2x1 − x2 = 2c2.

9. The characteristic equation is given by∣∣∣∣1− r i
−i 1− r

∣∣∣∣ = (1− r)2 + i2 = r(r − 2) = 0 .

The equation has roots r1 = 0 and r2 = 2. For r = 0, the components of the
solution vector must satisfy ξ1 + iξ2 = 0 . Thus the corresponding eigenvector is
ξ(1) = (1 , i)T . Substitution of r = 2 results in the single equation −ξ1 + iξ2 = 0.

A corresponding eigenvector is ξ(2) = (1 ,−i)T . Since the eigenvalues are distinct,
the general solution is

x = c1

(
1

i

)
+ c2

(
1

−i

)
e2t.

14. Setting x= ξ ert results in the algebraic equations1− r −1 4
3 2− r −1
2 1 −1− r

ξ1ξ2
ξ3

 =

0
0
0

 .

For a nonzero solution, we must have det(A− rI) = r3 − 2r2 − 5r + 6 = 0 . The
roots of the characteristic equation are r1 = 1 , r2 = −2 and r3 = 3 . Setting r = 1 ,
we have 0 −1 4

3 1 −1
2 1 −2

ξ1ξ2
ξ3

 =

0
0
0

 .

This system is reduced to the equations ξ1 + ξ3 = 0 and ξ2 − 4ξ3 = 0. A corre-
sponding solution vector is given by ξ(1) = (1 ,−4 ,−1)T . In a similar way the

eigenvectors corresponding to r2 and r3 are found to be ξ(2) = (1 ,−1 ,−1)T and
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ξ(3) = (1 , 2 , 1)T , respectively. Since the eigenvalues are distinct, the general solu-
tion is

x = c1

 1
−4
−1

 et + c2

 1
−1
−1

 e−2t + c3

1
2
1

 e3t.

16. Setting x= ξ ert results in the algebraic equations(
−2− r 1
−5 4− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 − 2r − 3 = 0 . The roots of
the characteristic equation are r1 = −1 and r2 = 3 . With r = −1 , the system of
equations reduces to ξ1 − ξ2 = 0. The corresponding eigenvector is ξ(1) = (1 , 1)T .
For the case r = 3 , the system is equivalent to the equation 5 ξ1 − ξ2 = 0 . An
eigenvector is ξ(2) = (1 , 5)T . Since the eigenvalues are distinct, the general solution
is

x = c1

(
1

1

)
e−t + c2

(
1

5

)
e3t.

Invoking the initial conditions, we obtain the system of equations c1 + c2 = 1 and
c1 + 5 c2 = 3. Hence c1 = 1/2 and c2 = 1/2 , and the solution of the IVP is

x =
1

2

(
1

1

)
e−t +

1

2

(
1

5

)
e3t.

As t→∞, the solution becomes asymptotic to x2 = 5x1.

20. Setting x= ξ tr , for t 6= 0 results in the algebraic equations(
2− r −1

3 −2− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 − 1 = 0 . The roots of the
characteristic equation are r1 = 1 and r2 = −1 . With r = 1 , the system of equa-
tions reduces to ξ1 − ξ2 = 0. The corresponding eigenvector is ξ(1) = (1 , 1)T . For
the case r = −1 , the system is equivalent to the equation 3 ξ1 − ξ2 = 0 . An eigen-
vector is ξ(2) = (1 , 3)T . It follows that

x(1) =

(
1

1

)
t and x(2) =

(
1

3

)
t−1.

The Wronskian of this solution set is W
[
x(1),x(2)

]
= 2. Thus the solutions are

linearly independent for t > 0 . Hence the general solution is

x = c1

(
1

1

)
t+ c2

(
1

3

)
t−1.

25. (a) The general solution is

x = c1

(
−1

2

)
et + c2

(
1

2

)
e−2t.



7.5 175

(b)

(c)

27.(a) The general solution is

x = c1

(
1

2

)
et + c2

(
1

−2

)
e2t.
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(b)

(c)

31.(a) For α = 1/2, solution of the ODE requires that(
−1− r −1
−1/2 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is 2r2 + 4r + 1 = 0 , with roots r1 = −1 + 1/
√

2 and
r2 = −1− 1/

√
2 . With r = −1 + 1/

√
2 , the system of equations is

√
2ξ1 + 2ξ2 = 0.

The corresponding eigenvector is ξ(1) = (−
√

2, 1)T . Substitution of r = −1− 1/
√

2

results in the equation
√

2ξ1 − 2ξ2 = 0. An eigenvector is ξ(2) = (
√

2, 1)T . The
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general solution is

x = c1

(
−
√

2

1

)
e(−2+

√
2)t/2 + c2

(√
2

1

)
e(−2−

√
2)t/2.

The eigenvalues are distinct and both negative. The equilibrium point is a stable
node.

(b) For α = 2 , the characteristic equation is given by r2 + 2 r − 1 = 0 , with roots
r1 = −1 +

√
2 and r2 = −1−

√
2 . With r = −1 +

√
2 , the system of equations

reduces to
√

2 ξ1 + ξ2 = 0 . The corresponding eigenvector is ξ(1) = (1 ,−
√

2)T .
Substitution of r = −1−

√
2 results in the equation

√
2 ξ1 − ξ2 = 0 . An eigenvec-

tor is ξ(2) = (1 ,
√

2)T . The general solution is

x = c1

(
1

−
√

2

)
e(−1+

√
2)t + c2

(
1√
2

)
e(−1−

√
2)t.

The eigenvalues are of opposite sign, hence the equilibrium point is a saddle point.

(c) The eigenvalues are given by∣∣∣∣−1− r −1
−α −1− r

∣∣∣∣ = r2 + 2r + 1− α = 0.

This r1,2 = −1±
√
α. Note that in part (a) the eigenvalues are both negative while

in part (b) they differ in sign. Thus, if we choose α = 1, then one eigenvalue is
zero, which is the transition of the one root from negative to positive. This is the
desired bifurcation point.

7.6

1. (a) Setting x= ξ ert results in the algebraic equations(
3− r −2

4 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we require that det(A− rI) = r2 − 2r + 5 = 0. The roots
of the characteristic equation are r = 1 ± 2i . Substituting r = 1 − 2i , the two
equations reduce to (2 + 2i) ξ1 − 2 ξ2 = 0 . The eigenvector is ξ(1) = (1 , 1 + i)T .
Hence one of the complex-valued solutions is given by

x(1) =

(
1

1 + i

)
e(1−2i)t =

(
1

1 + i

)
et(cos 2t− i sin 2t) =

= et
(

cos 2t

cos 2t+ sin 2t

)
+ i et

(
− sin 2t

− sin 2t+ cos 2t

)
.

To find real-valued solutions (see Eqs.(10) and (11)) we take the real and imaginary
parts, respectively, of x(1)(t):

x = c1 e
t

(
cos 2t

cos 2t+ sin 2t

)
+ c2 e

t

(
− sin 2t

− sin 2t+ cos 2t

)
.
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(b)

The solutions spiral to ∞ as t→∞ due to the et terms.

7. The eigensystem is obtained from analysis of the equation1− r 0 0
2 1− r −2
3 2 1− r

ξ1ξ2
ξ3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is (1− r)(r2 − 2r + 5) = 0 ,
with roots r1 = 1 , r2 = 1 + 2i and r3 = 1− 2i . Setting r = 1 , the equations
reduce to ξ1 − ξ3 = 0 and 3ξ1 + 2ξ2 = 0. If we choose ξ2 = −3, the corresponding
eigenvector is ξ(1) = (2 ,−3 , 2)T . With r = 1 + 2i, the system of equations is equiv-

alent to iξ1 = 0 and iξ2 + ξ3 = 0. An eigenvector is given by ξ(2) = (0 , 1 ,−i)T .
Hence one of the complex-valued solutions is given by

x(2) =

 0
1
−i

 e(1+2i)t =

 0
1
−i

 et(cos 2t+ i sin 2t).

Taking the real and imaginary parts, we obtain

et

 0
cos 2t
sin 2t

 and et

 0
sin 2t
− cos 2t

 .

Thus the general solution is

x = c1

 2
−3
2

 et + c2 e
t

 0
cos 2t
sin 2t

+ c3e
t

 0
sin 2t
− cos 2t

 ,

which spirals to∞ about the x1 axis in the x1x2x3 space as t→∞ (for most initial
conditions).

9. Solution of the system of ODEs requires that(
1− r −5

1 −3− r

)(
ξ1
ξ2

)
=

(
0

0

)
.
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The characteristic equation is r2 + 2 r + 2 = 0 , with roots r = −1 ± i . Substitut-
ing r = −1 + i , the equations are equivalent to ξ1 = (2 + i)ξ2. The corresponding

eigenvector is ξ(1) = (2 + i, 1)T . One of the complex-valued solutions is given by

x(1) =

(
2 + i

1

)
e(−1+i)t =

(
2 + i

1

)
e−t(cos t+ i sin t) =

= e−t
(

2 cos t− sin t

cos t

)
+ ie−t

(
2 sin t+ cos t

sin t

)
.

Hence the general solution is

x = c1 e
−t
(

2 cos t− sin t

cos t

)
+ c2 e

−t
(

2 sin t+ cos t

sin t

)
.

Invoking the initial conditions, we obtain the system of equations 2c1 + c2 = 1 and
c1 = 1. Solving for the coefficients, the solution of the initial value problem is

x = e−t
(

2 cos t− sin t

cos t

)
− e−t

(
2 sin t+ cos t

sin t

)
= e−t

(
cos t− 3 sin t

cos t− sin t

)
,

which spirals to zero as t→∞, due to the e−t term.

11.(a) The eigenvalues are given by∣∣∣∣3/4− r −2
1 −5/4− r

∣∣∣∣ = r2 + r/2 + 17/16 = 0,

so r = 1/4± i. With x(0) = (2 , 2)T , the solution is

x = e−t/4
(

2 cos t− 2 sin t

2 cos t

)
.

(b)
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(c)

(d) Choose x(0) = (2 , 2)T , then the trajectory starts at (2, 2) in the x1x2 plane
and spirals around the t-axis and converges to the t-axis as t→∞.

15.(a) The roots of the characteristic equation, r2 − 4 + 5α = 0 , are r1,2 = ±
√

4− 5α.

(b) The qualitative nature of the phase portrait changes when r goes from real to
complex. Thus α = 4/5 is the critical value.

(c)

(a) α = 3/5 (b) α = 1
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16.(a) The roots of the characteristic equation, r2 − 5r/2 + (25/16− 3α/4) = 0 ,
are r1,2 = 5/4±

√
3α/2.

(b) There are two critical values of α. For α < 0 the eigenvalues are complex, while
for α > 0 they are real. There will be a second critical value of α when r2 = 0, or
α = 25/12. In this case the second real eigenvalue goes from positive to negative.

(c)

(a) α = −1 (b) α = 1 (c) α = 3

18.(a) The roots of the characteristic equation, r2 + r − 12 + 6α = 0 , are r1,2 =
−1/2±

√
49− 24α/2.

(b) There are two critical values of α. The first occurs when 49− 24α = 1 (in
which case r2 = 0) and when 49− 24α = 0, in which case r1 = r2 = −1/2. Thus
the critical values are at α = 2 and α = 49/24.

(c)

(a) α = 1.8 (b) α = 2.01 (c) α = 2.1

21. Based on the method in Problem 19 of Section 7.5, setting x= ξ tr and assuming
t 6= 0 results in the algebraic equations(

−1− r −1
2 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.
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The characteristic equation for the system is r2 + 2r + 3 = 0 , with roots r1,2 =
−1±

√
2i . With r = −1 +

√
2i , the equations reduce to the single equation

√
2iξ1 +

ξ2 = 0. A corresponding eigenvector is ξ(1) = (1 ,−
√

2i)T . One complex-valued so-
lution is

x(1) =

(
1

−
√

2i

)
t−1+

√
2i .

We can write t
√
2i = e

√
2i ln t. Hence

x(1) =

(
1

−
√

2i

)
t−1e

√
2i ln t =

(
1

−
√

2i

)
t−1

[
cos(
√

2 ln t) + i sin(
√

2 ln t)
]
.

Separating the complex valued solution into real and imaginary parts, we obtain
that the general solution is

x = c1t
−1
(

cos(
√

2 ln t)√
2 sin(

√
2 ln t)

)
+ c2t

−1
(

sin(
√

2 ln t)

−
√

2 cos(
√

2 ln t)

)
.

23.(a) The characteristic equation of the system is (r + 1/4)((r + 1/4)2 + 1) = 0,
with eigenvalues r1 = −1/4, and r2,3 = −1/4± i. For r = −1/4, simple calculations

reveal that a corresponding eigenvector is ξ(1) = (0, 0, 1)T . Setting r = −1/4−
i, we obtain the system of equations ξ1 − i ξ2 = 0 and ξ3 = 0. A corresponding
eigenvector is ξ(2) = (i , 1 , 0)T . Hence one solution is

x(1) =

0
0
1

 e−t/4.

Another solution, which is complex-valued, is given by

x(2) =

i1
0

 e−(
1
4−i)t =

i1
0

 e−t/4(cos t− i sin t) =

= e−t/4

sin t
cos t

0

+ ie−t/4

 cos t
− sin t

0

 .

Using the real and imaginary parts of x(2), the general solution is constructed as

x = c1

0
0
1

 e−t/4 + c2 e
−t/4

sin t
cos t

0

+ c3 e
−t/4

 cos t
− sin t

0

 .

(b) With x(0) = (1 , 1 , 1), the solution of the initial value problem is

x =

 0
0

e−t/4

+ e−t/4

sin t+ cos t
cos t− sin t

0

 .
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(a) x1 − x2 (b) x1 − x3

(c) x2 − x3 (d) x1x2x3

30.(a) Following the steps leading to Eq.(24) and using the given values for the m’s
and k’s, we have

y ′1 = y3

y ′2 = y4

y ′3 = −4y1 + 3y2

y ′4 = (9/4)y1 − (13/4)y2

hence the coefficient matrix is

A =


0 0 1 0
0 0 0 1
−4 3 0 0
9/4 −13/4 0 0

 .

(b) The eigenvalues and corresponding eigenvectors of A are:

r1 = i , ξ(1) = (1, 1, i, i)T

r2 = −i , ξ(2) = (1, 1,−i,−i)T

r3 = (5/2) i , ξ(3) = (4,−3, 10i,−15i/2)T

r4 = −(5/2) i , ξ(4) = (4,−3,−10i, 15i/2)T
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(c) Note that

ξ(1)eit =


1
1
i
i

 (cos t+ i sin t)

and

ξ(3)e(5/2)it =


4
−3
10i
−15i/2

 (cos 5t/2 + i sin 5t/2).

Hence the general solution is

y = c1


cos t
cos t
− sin t
− sin t

+ c2


sin t
sin t
cos t
cos t

+ c3


4 cos 5t/2
−3 cos 5t/2
−10 sin 5t/2

(15/2) sin 5t/2

+ c4


4 sin 5t/2
−3 sin 5t/2
10 cos 5t/2

−(15/2) cos 5t/2

 .

(d) The two modes have natural frequencies of ω1 = 1 rad/sec and ω2 = 5/2 rad/sec.
The first pair of figures corresponds to c1 = 1, c2 = c3 = c4 = 0 (first mode - observe
that in this case y1 = y2 and y3 = y4), the second pair corresponds to c3 = 1, c1 =
c2 = c4 = 0 (second mode).

(a) y1, y2 vs t (b) y1 vs y3, y2 vs y4

(c) y1, y2 vs t (d) y1 vs y3, y2 vs y4
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(e) For the initial condition y(0) = (2, 1, 0, 0)T , it is necessary that
2
1
0
0

 = c1


1
1
0
0

+ c2


0
0
1
1

+ c3


4
−3
0
0

+ c4


0
0
10
−15/2

 ,

resulting in the coefficients c1 = 10/7, c2 = 0, c3 = 1/7 and c4 = 0.

The solutions are periodic with period 4π.

7.7

Each of the problems 1 through 10, except 2 and 8, has been solved in one of the
previous sections. Thus a fundamental matrix for the given systems can be readily
written down. The fundamental matrix Φ(t) satisfying Φ(0) = I can then be found
as shown in the following problems.

2.(a) The characteristic equation is given by r2 + 3r/2 + 1/2 = 0, so r1 = −1, r2 =
−1/2. The corresponding eigenvectors are

r1 = −1, ξ(1) =

(
−2

1

)
; r2 = −1/2, ξ(2) =

(
2

1

)
.

The general solution is

x = c1

(
−2e−t

e−t

)
+ c2

(
2 e−t/2

e−t/2

)
.
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Hence a fundamental matrix is given by

Ψ(t) =

(
−2e−t 2 e−t/2

e−t e−t/2

)
.

(b) We now have

Ψ(0) =

(
−2 2
1 1

)
and Ψ−1(0) =

1

4

(
−1 2
1 2

)
,

so that

Φ(t) = Ψ(t)Ψ−1(0) =
1

4

(
2e−t + 2e−t/2 −4e−t + 4e−t/2

−e−t + e−t/2 2e−t + 2e−t/2

)
.

4.(a) From Problem 4 of Section 7.5, we have the two linearly independent solutions

x(1)(t) =

(
1

1

)
e2t and x(2)(t) =

(
1

−4

)
e−3t.

Thus

Ψ(t) =

(
e2t e−3t

e2t −4e−3t

)
.

(b) We now have

Ψ(0) =

(
1 1
1 −4

)
and Ψ−1(0) =

1

5

(
4 1
1 −1

)
,

so that

Φ(t) = Ψ(t)Ψ−1(0) =
1

5

(
e−3t + 4e2t −e−3t + e2t

−4e−3t + 4e2t 4e−3t + e2t

)
.

6.(a) Two linearly independent real-valued solutions were found of the differential
equation were found in Problem 2 of Section 7.6. Using the result of that problem,
we have

x(1)(t) = e−t
(
−2 sin 2t

cos 2t

)
and x(2)(t) = e−t

(
2 cos 2t

sin 2t

)
.

Thus

Ψ(t) =

(
−2e−t sin 2t 2e−t cos 2t
e−t cos 2t e−t sin 2t

)
.

(b) We now have

Ψ(0) =

(
0 2
1 0

)
and Ψ−1(0) =

1

2

(
0 2
1 0

)
,

so that

Φ(t) = Ψ(t)Ψ−1(0) =

(
e−t cos 2t −2e−t sin 2t
e−t sin 2t/2 e−t cos 2t

)
.
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10.(a) From Problem 14 of Section 7.5 we have

x(1)(t) =

 1
−4
−1

 et, x(2)(t) =

 1
−1
−1

 e−2t, x(3)(t) =

1
2
1

 e3t

Thus

Ψ(t) =

 et e−2t e3t

−4et −e−2t 2e3t

−et −e−2t e3t

 .

(b) For the first column of Φ we want to choose c1, c2 and c3 such that c1x
(1)(0) +

c2x
(2)(0) + c3x

(3)(0) = (1, 0, 0)T . Thus c1 + c2 + c3 = 1, −4c1 − c2 + 2c3 = 0 and
−c1 − c2 + c3 = 0, which yield c1 = 1/6, c2 = 1/3 and c3 = 1/2. The first column
of Φ is then  et/6 + e−2t/3 + e3t/2

−2et/3− e−2t/3 + e3t

−et/6− e−2t/3 + e3t/2

 .

Likewise, for the second column we have d1x
(1)(0) + d2x

(2)(0) + d3x
(3)(0) = (0, 1, 0)T ,

which yields d1 = −1/3, d2 = 1/3 and d3 = 0. Finally, the coefficients for the third
column of Φ are given by e1 = 1/2, e2 = −1 and e3 = 1/2. These give us

Φ =

 et/6 + e−2t/3 + e3t/2 e−2t/3− et/3 −e−2t + et/2 + e3t/2
−2et/3− e−2t/3 + e3t 4et/3− e−2t/3 −2et + e−2t + e3t

−et/6− e−2t/3 + e3t/2 e−t/3− e−2t/3 e−2t − e−t/2 + e3t/2

 .

11. From Eq.(14) the solution is given by Φ(t)x0. Thus

x =
1

2

(
3et − e−t −et + e−t

3et − 3e−t −et + 3e−t

)(
2
−1

)
=

(
7et/2− 3e−t/2
7et/2− 9e−t/2

)
.

7.8

1.(a)
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(b) From the general solution we have x2/x1 = (c1 + c2t)/(2c1 + 2c2t+ c2), so that
limt→∞ x2/x1 = 1/2. Thus all solutions (except the trivial one) diverge to infinity
along lines of slope 1/2 which can be seen in the trajectories shown in part (a).

(c) Solution of the ODE requires analysis of the algebraic equations(
3− r −4

1 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

For a nonzero solution, we must have det(A− rI) = r2 − 2r + 1 = 0. The only
root is r = 1 , which is an eigenvalue of multiplicity two. Setting r = 1 in the
coefficient matrix reduces the system to the single equation ξ1 − 2ξ2 = 0 . Hence
the corresponding eigenvector is ξ = (2 , 1)T . One solution is

x(1) =

(
2

1

)
et.

In order to obtain a second linearly independent solution, we assume, as in Eq.(13),
that x = ξtet + ηet. As in Example 2, we find that ξ is an eigenvector, so we choose
ξ = (2, 1)T . Then η must satisfy Eq.(24): (A− rI)η = ξ, or(

2 −4
1 −2

)(
η1
η2

)
=

(
2

1

)
.

These equations reduce to η1 − 2η2 = 1. Set η2 = k , some arbitrary constant. Then
η1 = 1 + 2k . A second solution is

x(2) =

(
2

1

)
tet +

(
1 + 2k

k

)
et =

(
2

1

)
tet +

(
1

0

)
et + k

(
2

1

)
et.

Since the last term is a multiple of the first solution, it can be dropped. The general
solution is

x = c1

(
2

1

)
et + c2

[(
2

1

)
tet +

(
1

0

)
et
]
.

3.(a)
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(b) The origin is attracting. That is, as t→∞ the solution approaches the origin
tangent to the line x2 = x1/2, which is obtained by taking the limt→∞ x2/x1 similar
to Problem 1.

(c) Solution of the ODEs is based on the analysis of the algebraic equations(
− 3

2 − r 1
− 1

4 − 1
2 − r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 + 2 r + 1 = 0 , with a single root r = −1 . Setting
r = −1 , the two equations reduce to ξ1 − 2ξ2 = 0 . The corresponding eigenvector
is ξ = (2 , 1)T . One solution is

x(1) =

(
2

1

)
e−t.

As in Problem 1, a second linearly independent solution is obtained by finding a
generalized eigenvector. We therefore analyze the system(

−1/2 1
−1/4 1/2

)(
η1
η2

)
=

(
2

1

)
.

The equations reduce to the single equation −η1 + 2η2 = 4. Let η1 = 2k. We obtain
η2 = 2 + k , and a second linearly independent solution is

x(2) =

(
2

1

)
te−t +

(
2k

2 + k

)
e−t =

(
2

1

)
te−t +

(
0

2

)
e−t + k

(
2

1

)
e−t.

Dropping the last term, the general solution is

x = c1

(
2

1

)
e−t + c2

[(
2

1

)
te−t +

(
0

2

)
e−t
]
.

5. The eigensystem is obtained from analysis of the equation1− r 1 1
2 1− r −1
0 −1 1− r

ξ1ξ2
ξ3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is −r3 + 3r2 − 4 = 0 , with
roots r1 = −1 and r2,3 = 2 . Setting r = −1 , we have2 1 1

2 2 −1
0 −1 2

ξ1ξ2
ξ3

 =

0
0
0

 .

This system is reduced to the equations 2ξ1 + ξ2 + ξ3 = 0 and ξ2 − 2ξ3 = 0. A cor-
responding eigenvector is given by ξ(1) = (−3 , 4 , 2)T . Setting r = 2 , the system of
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equations is reduced to the equations −ξ1 + ξ2 + ξ3 = 0 and ξ2 + ξ3 = 0. An eigen-
vector vector is given by ξ(2) = (0 , 1 ,−1)T . The second solution corresponding to
the double eigenvalue will have the form specified by Eq.(13), which yields

x(3) =

 0
1
−1

 te2t + ηe2t.

Substituting this into the given system, or using Eq.(24), we find that−1 1 1
2 −1 −1
0 −1 −1

η1η2
η3

 =

 0
1
−1

 .

Using row reduction we find that η1 = 1 and η2 + η3 = 1. If we choose η2 = 0, then
η = (1, 0, 1)T and thus

x(3) =

 0
1
−1

 te2t +

1
0
1

 e2t.

Therefore the general solution may be written as

x = c1

−3
4
2

 e−t + c2

 0
1
−1

 e2t + c3

 0
1
−1

 te2t +

1
0
1

 e2t

 .
9. (a) Solution of the ODEs is based on the analysis of the algebraic equations(

2− r 3
2

− 3
2 −1− r

)(
ξ1
ξ2

)
=

(
0

0

)
.

The characteristic equation is r2 − r + 1/4 = 0 , with a single root r = 1/2 . Setting
r = 1/2, the two equations reduce to ξ1 + ξ2 = 0. The corresponding eigenvector is
ξ = (1 ,−1)T . One solution is

x(1) =

(
1

−1

)
et/2.

A second linearly independent solution is obtained by solving the system(
3/2 3/2
−3/2 −3/2

)(
η1
η2

)
=

(
1

−1

)
.

The equations reduce to the single equation 3η1 + 3η2 = 2. Let η1 = k. We obtain
η2 = 2/3− k , and a second linearly independent solution is

x(2) =

(
1

−1

)
tet/2 +

(
k

2/3− k

)
et/2 =

(
1

−1

)
te−t +

(
0

2/3

)
et/2 + k

(
1

−1

)
et/2.

Dropping the last term, the general solution is

x = c1

(
1

−1

)
et/2 + c2

[(
1

−1

)
tet/2 +

(
0

2/3

)
et/2

]
.
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Imposing the initial conditions, we find that c1 = 3, −c1 + 2c2/3 = −2, so that
c1 = 3 and c2 = 3/2 . Therefore the solution of the IVP is

x =

(
3

−2

)
et/2 +

(
3/2

−3/2

)
tet/2.

(b)

11.(a) The characteristic equation of the system is (r − 1)2(r − 2) = 0 . The eigen-

values are r1 = 2 and r2,3 = 1 . The eigenvector associated with r1 is ξ(1) =
(0 , 0 , 1)T . Setting r = 1 , the system of equations is reduced to the equations

ξ1 = 0 and 6ξ2 + ξ3 = 0. An eigenvector vector is given by ξ(2) = (0 , 1 ,−6)T . The
second solution corresponding to the double eigenvalue will have the form specified
by Eq.(13), which yields

x(3) =

 0
1
−6

 tet + ηet.

Substituting this into the given system, or using Eq.(24), we find that 0 0 0
−4 0 0
3 6 1

η1η2
η3

 =

 0
1
−6

 .

Using row reduction we find that η1 = −1/4 and 6η2 + η3 = −21/4. If we choose
η2 = 0, then η = (−1/4, 0,−21/4)T and thus

x(3) =

 0
1
−6

 tet +

 −1/4
0

−21/4

 et.

Therefore the general solution may be written as

x = c1

0
0
1

 e2t + c2

 0
1
−6

 et + c3

 0
1
−6

 tet +

 −1/4
0

−21/4

 et

 .
The initial conditions then yield c1 = 3, c2 = 2 and c3 = 4 and hence

x =

0
0
3

 e2t + 4

 0
1
−6

 tet +

 −1
2
−33

 et.
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(b)

12.(a) The characteristic equation of the system is 8 r3 + 60 r2 + 126 r + 49 = 0 .
The eigenvalues are r1 = −1/2 and r2,3 = −7/2 . The eigenvector associated with

r1 is ξ(1) = (1 , 1 , 1)T . Setting r = −7/2 , the components of the eigenvectors must
satisfy the relation

ξ1 + ξ2 + ξ3 = 0 .

An eigenvector vector is given by ξ(2) = (1 , 0 ,−1)T . Since the last equation has two
free variables, a third linearly independent eigenvector (associated with r = −7/2)

is ξ(3) = (0 , 1 ,−1)T . Therefore the general solution may be written as

x = c1

1
1
1

 e−t/2 + c2

 1
0
−1

 e−7t/2 + c3

 0
1
−1

 e−7t/2.

Invoking the initial conditions, we require that c1 + c2 = 2, c1 + c3 = 3, and c1 −
c2 − c3 = −1. Hence the solution of the IVP is

x =
4

3

1
1
1

 e−t/2 +
2

3

 1
0
−1

 e−7t/2 +
5

3

 0
1
−1

 e−7t/2.

(b)

14. Setting x= ξ tr and assuming t 6= 0 results in the algebraic equations(
1− r −4

4 −7− r

)(
ξ1
ξ2

)
=

(
0

0

)
.
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The characteristic equation is r2 + 6r + 9 = 0 , with a single root of r1,2 = −3 .
With r = −3 , the system reduces to a single equation ξ1 − ξ2 = 0. An eigenvector
is given by ξ = (1 , 1)T . Hence one solution is

x(1) =

(
1

1

)
t−3 .

By analogy with the scalar case considered in Section 5.4 and Example 2 of this
section, we seek a second solution of the form x = ηt−3 ln t+ ζt−3. Substituting
these expressions into the differential equation we find that η and ζ satisfy the
equations (A + 3I)η = 0 and (A + 3I)ζ = η. Thus η = (1, 1)T from above and
ζ then satisfies 4ζ1 − 4ζ2 = 1, Choosing ζ1 = 0 we obtain ζ2 = −1/4 and hence a
second solution is

x(2) =

(
1

1

)
t−3 ln t+

(
0

−1/4

)
t−3.

15. The characteristic equation is

r2 − (a+ d)r + ad− bc = 0 .

Hence the eigenvalues are

r1,2 =
a+ d

2
± 1

2

√
(a+ d)2 − 4(ad− bc) .

Now if ad− bc < 0, then we have two real eigenvalues, one of which is positive. Thus
there are solutions which do not converge to zero as t→∞. Also, if ad− bc = 0,
then one of the eigenvalues is zero, so there are constant solutions other than zero,
and these do not converge to zero as t→∞. So ad− bc > 0 is a necessary condi-
tion. When ad− bc > 0, we have two possibilities: either we have real solutions, or
complex ones. In the complex case, the real part of the eigenvalues is (a+ d)/2, so
in order for all solutions to converge to zero, we need that a+ d < 0. In the real
case, we have two eigenvalues of the same sign, so again we need that a+ d < 0.
Thus the two constraints are necessary, and clearly they are also sufficient for all
solutions to converge to zero as t→∞.

17.(a) We see that

(A− 2I)2η = (A− 2I)(A− 2I)η = (A− 2I)ξ = 0.

(b) We compute:

(A− 2I)2 =

(
−1 −1
1 1

)(
−1 −1
1 1

)
=

(
0 0
0 0

)
.

(c) When η = (0,−1)T , then (A− 2I)η = ξ gives us

ξ =

(
−1 −1
1 1

)(
0
−1

)
=

(
1
−1

)
= ξ(1).

(d) When η = (1, 0)T , then (A− 2I)η = ξ gives us

ξ =

(
−1 −1
1 1

)(
1
0

)
=

(
−1
1

)
= −ξ(1).
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(e) As in parts (c) and (d), when η = (k1, k2)T , then (A− 2I)η = ξ gives us

ξ =

(
−1 −1
1 1

)(
k1
k2

)
=

(
−k1 − k2
k1 + k2

)
= −(k1 + k2)ξ(1).

18.(a) The eigensystem is obtained from analysis of the equation1− r 1 1
2 1− r −1
−3 2 4− r

ξ1ξ2
ξ3

 =

0
0
0

 .

The characteristic equation of the coefficient matrix is −r3 + 6r2 − 12r + 8 = (2−
r)3 = 0 , with the single root r = 2. Setting r = 2 , we have−1 1 1

2 −1 −1
−3 2 2

ξ1ξ2
ξ3

 =

0
0
0

 .

This system is reduced to the equations ξ1 − ξ2 − ξ3 = 0 and ξ2 + ξ3 = 0, so the
only eigenvectors are the multiples of ξ(1) = (0 , 1 ,−1)T .

(b) From part (a), one solution of the given differential equation is

x(1)(t) =

 0
1
−1

 e2t.

(c) Differentiating x = ξte2t + ηe2t and using the fact that we want x′ = Ax, we
need ξe2t + 2ξte2t + 2ηe2t = A(ξte2t + ηe2t). Dividing by the nonzero term e2t

and rearranging, we obtain ξ = (A− 2I)ξt+ (A− 2I)η. Thus we want to solve

(A− 2I)ξ = 0, (A− 2I)η = ξ with ξ = ξ(1) from part (a). This leads to the system
of equations η1 − η2 − η3 = 0 and η2 + η3 = 1, so if we choose η3 = 0, then η1 = 1
and η2 = 1 and so η = (1, 1, 0)T . Hence a second solution of the equation is

x(2)(t) =

 0
1
−1

 te2t +

1
1
0

 e2t.

(d) Assuming x = ξ(t2/2)e2t + ηte2t + ζe2t, we have Ax = Aξ(t2/2)e2t + Aηte2t +
Aζe2t and x′ = ξte2t + 2ξ(t2/2)e2t + ηe2t + 2ηte2t + 2ζe2t and thus (A− 2I)ξ =
0, (A− 2I)η = ξ and (A− 2I)ζ = η. Again, ξ and η are as found previously and
the last equation is equivalent to−1 1 1

2 −1 −1
−3 2 2

ζ1ζ2
ζ3

 =

1
1
0

 .

By row reduction we find the system ζ1 − ζ2 − ζ3 = −1 and ζ2 + ζ3 = 3, so if we
choose ζ2 = 0, then ζ1 = 2 and ζ3 = 3 and so ζ = (2, 0, 3)T . Hence a third solution
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of the equation is

x(3)(t) =

 0
1
−1

 (t2/2)e2t +

1
1
0

 te2t +

2
0
3

 e2t.

(e) Ψ is the matrix with x(1)(t) as the first column, x(2)(t) as the second column
and x(3)(t) as the third column.

(f) Here

T =

 0 1 2
1 1 0
−1 0 3

 ,

and using row operations on [T | I ] or a computer algebra system we get

T−1 =

−3 3 2
3 −2 −2
−1 1 1

 ,

so we obtain that

T−1AT =

2 1 0
0 2 1
0 0 2

 = J,

which is equivalent to Eq.(29) for this problem.

20.(a) We compute:

J2 = JJ =

(
λ 1
0 λ

)(
λ 1
0 λ

)
=

(
λ2 2λ
0 λ2

)
,

J3 = JJ2 =

(
λ 1
0 λ

)(
λ2 2λ
0 λ2

)
=

(
λ3 3λ2

0 λ3

)
,

J4 = JJ3 =

(
λ 1
0 λ

)(
λ3 3λ
0 λ3

)
=

(
λ4 4λ3

0 λ4

)
.

(b) Assume that

Jn =

(
λn nλn−1

0 λn

)
.

Then

Jn+1 = JJn =

(
λ 1
0 λ

)(
λn nλn−1

0 λn

)
=

(
λn+1 (n+ 1)λn

0 λn+1

)
,

which is the desired result.

(c) From Eq.(23) of Section 7.7, we have

eJt = I +

∞∑
n=1

Jntn

n!
= I +

∞∑
n=1

(
λntn/n! nλn−1tn/n!

0 λntn/n!

)
=
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=

(
1 +

∑∞
n=1 λ

ntn/n! t
∑∞
n=1 λ

n−1tn−1/(n− 1)!
0 1 +

∑∞
n=1 λ

ntn/n!

)
=

(
eλt teλt

0 eλt

)
.

(d) From Eq.(28) of Section 7.7, we have

x = eJtx0 =

(
eλt teλt

0 eλt

)(
x0
1

x0
2

)
=

(
x0
1e
λt + x0

2te
λt

x0
2e
λt

)
=

(
x0
1

x0
2

)
eλt +

(
x0
2

0

)
teλt.

7.9

1. The eigenvalues of (
2 −1
3 −2

)
are given by r1 = 1 and r2 = −1. Corresponding eigenvectors are given by

ξ(1) =

(
1
1

)
, ξ(2) =

(
1
3

)
.

Therefore, two linearly independent solutions are given by

x(1)(t) =

(
1
1

)
et, x(2)(t) =

(
1
3

)
e−t,

and

Ψ(t) =

(
et e−t

et 3e−t

)
is a fundamental matrix. In order to find the general solution using variation of
parameters, we need to calculate

∫ t
t1

Ψ−1(s)g(s)ds. We see that

Ψ−1(s) =
1

2

(
3e−s −e−s
−es es

)
.

Therefore, ∫ t

t1

Ψ−1(s)g(s) ds =
1

2

∫ t

t1

(
3e−s −e−s
−es es

)(
es

s

)
ds =

=
1

2

∫ t

t1

(
3− se−s
−e2s + ses

)
ds =

1

2

(
3t+ te−t + e−t

− 1
2e

2t + tet − et
)

+ c.

Then the general solution will be given by

x(t) = Ψ(t)c + Ψ(t)

∫ t

t1

Ψ−1(s)g(s) ds

=

(
et e−t

et 3e−t

)
c +

(
et e−t

et 3e−t

)[
1

2

(
3t+ te−t + e−t

− 1
2e

2t + tet − et
)

+ c

]
= c1e

t

(
1
1

)
+ c2e

−t
(

1
3

)
+

( (
3
2 t−

1
4

)
et + t(

3
2 t−

3
4

)
et + 2t− 1

)
.
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2. For this problem, we illustrate the use of the Laplace Transform. As in Eq.(43),

(sI−A)X =


1

s− 1√
3

s+ 1

 ,

where we have assumed that x(0) = 0. We find that

sI−A = s

(
1 0
0 1

)
−
(

1
√

3√
3 −1

)
=

(
s− 1 −

√
3

−
√

3 s+ 1

)
,

which implies that

(sI−A)−1 =
1

s2 − 4

(
1 + s

√
3√

3 s− 1

)
,

which gives

X(s) = (sI−A)−1


1

s− 1√
3

s+ 1

 =


1

s− 2
− 2/3

s− 1
− 1

s+ 1
+

2/3

s+ 2√
3/3

s− 2
−
√

3/3

s− 1
+

2
√

3/3

s+ 1
− 2
√

3/3

s+ 2

 ,

using partial fractions. The inverse transform then gives

x(t) =

(
1√
3/3

)
e2t − 1

3

(
2√
3

)
et +

(
−1

2
√

3/3

)
e−t +

2

3

(
1

−
√

3

)
e−2t.

As in Example 4, in order to obtain the general solution of the differential equation,
we must add the general solution of the homogeneous system to this particular
solution. This particular solution differs from the one given in the text by a multiple
of the homogeneous solution.

3. The eigenvalues of (
2 −5
1 −2

)
are given by r1 = i and r2 = −i. For r = i, ξ = (2 + i, 1)T is a corresponding eigen-
vector, and

x(t) = eit
(

2 + i
1

)
is a solution of the homogeneous equation. Looking at the real and imaginary parts
of x, we have the following two linearly independent, real-valued solutions of the
homogeneous equation:

x(1)(t) =

(
2
1

)
cos t−

(
1
0

)
sin t, x(2)(t) =

(
2
1

)
sin t+

(
1
0

)
cos t.

Therefore,

Ψ(t) =

(
2 cos t− sin t 2 sin t+ cos t

cos t sin t

)
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is a fundamental matrix. In order to calculate the general solution, we need to
calculate

∫ t
t1

Ψ−1(s)g(s)ds. We see that

Ψ−1(s) =

(
− sin s 2 sin s+ cos s
cos s −2 cos s+ sin s

)
.

Therefore,∫ t

t1

Ψ−1(s)g(s) ds =

∫ t

t1

(
− sin s 2 sin s+ cos s
cos s −2 cos s+ sin s

)(
− cos s
sin s

)
ds =

=

∫ t

t1

(
2 sin s cos s+ 2 sin2 s

−2 cos s sin s+ sin2 s− cos2 s

)
ds =

∫ t

t1

(
sin 2s+ 1− cos 2s
− sin 2s− cos 2s

)
ds =

=
1

2

(
− cos 2t+ 2t− sin 2t

cos 2t− sin 2t

)
+ c.

Then the general solution will be given by

x(t) = Ψ(t)c + Ψ(t)

∫ t

t1

Ψ−1(s)g(s) ds =

(
2 cos t− sin t 2 sin t+ cos t

cos t sin t

)
c

+
1

2

(
2 cos t− sin t 2 sin t+ cos t

cos t sin t

)(
− cos 2t+ 2t− sin 2t

cos 2t− sin 2t

)
= c1

(
2 cos t− sin t

cos t

)
+ c2

(
2 sin t+ cos t

sin t

)
+

1

2

(
4t cos t− 2t sin t− cos t− 3 sin t

2t cos t− cos t− sin t

)
.

We note that in multiplying the last two matrices, we made use of the trigonometric
identities, cos 2t = 2 cos2 t− 1 and cos 2t = 1− 2 sin2 t.

4. In this problem we use the method illustrated in Example 1. From Problem 4
of Section 7.5 we have the transformation matrix

T =

(
1 1
−4 1

)
.

Inverting T we find that

T−1 =
1

5

(
1 −1
4 1

)
.

If we let x = Ty and substitute into the differential equation, we obtain

y′ =
1

5

(
1 −1
4 1

)(
1 1
4 −2

)(
1 1
−4 1

)
y +

1

5

(
1 −1
4 1

)(
e−2t

−2et

)
=

(
−3 0
0 2

)
y +

1

5

(
e−2t + 2et

4e−2t − 2et

)
.

This corresponds to the two scalar equations y′1 + 3y1 = (1/5)e−2t + (2/5)et and
y′2 − 2y2 = (4/5)e−2t − (2/5)et, which may be solved by the methods of Section
2.1. For the first equation the integrating factor is e3t and we obtain (e3ty1)′ =
(1/5)et + (2/5)e4t, so e3ty1 = (1/5)et + (1/10)e4t + c1. For the second equation
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the integrating factor is e−2t, so (e−2ty2)′ = (4/5)e−4t − (2/5)e−t, hence e−2ty2 =
−(1/5)e−4t + (2/5)e−t + c2. Thus

y =

(
1/5
−1/5

)
e−2t +

(
1/10
2/5

)
et +

(
c1e
−3t

c2e
2t

)
.

Finally, multiplying by T, we obtain

x = Ty =

(
0
−1

)
e−2t +

(
1/2
0

)
et + c1

(
1
−4

)
e−3t + c2

(
1
1

)
e2t.

The last two terms are the general solution of the corresponding homogeneous
system, while the first two terms constitute a particular solution of the nonhomo-
geneous system.

8. The eigenvalues of the coefficient matrix are r1 = 1 and r2 = −1 . It follows
that the solution of the homogeneous equation is

xc = c1

(
1

1

)
et + c2

(
1

3

)
e−t.

Use the method of undetermined coefficients. Since the right hand side is related
to one of the fundamental solutions, set v=a tet+b et. Substitution into the ODE
yields(

a1
a2

)
(et + tet) +

(
b1
b2

)
et =

(
2 −1
3 −2

)(
a1
a2

)
tet +

(
2 −1
3 −2

)(
b1
b2

)
et +

(
1

−1

)
et.

In scalar form, we have

(a1 + b1)et + a1te
t = (2a1 − a2)tet + (2b1 − b2)et + et

(a2 + b2)et + a2te
t = (3a1 − 2a2)tet + (3b1 − 2b2)et − et .

Equating the coefficients in these two equations, we find that

a1 = 2a1 − a2
a1 + b1 = 2b1 − b2 + 1

a2 = 3a1 − 2a2

a2 + b2 = 3b1 − 2b2 − 1 .

It follows that a1 = a2. Setting a1 = a2 = a , the equations reduce to

b1 − b2 = a− 1

3b1 − 3b2 = 1 + a .

Combining these equations, it is necessary that a = 2 . As a result, b1 = b2 + 1 .
Choosing b2 = k , some arbitrary constant, a particular solution is

v =

(
2

2

)
tet +

(
k + 1

k

)
et =

(
2

2

)
tet + k

(
1

1

)
et +

(
1

0

)
et.

Since the second vector is a fundamental solution, the general solution can be
written as

x = c1

(
1

1

)
et + c2

(
1

3

)
e−t +

(
2

2

)
tet +

(
1

0

)
et.
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12. Since the coefficient matrix is the same as that of Problem 3, use the same
procedure as done in that problem, including the Ψ−1 found there. In the interval
π/2 < t < π, sin t > 0 and cos t < 0, hence | sin t| = sin t but | cos t| = − cos t.

14. The general solution of the homogeneous problem is

x(c) = c1

(
1

1

)
t+ c2

(
1

3

)
t−1,

which can be verified by substitution into the system of ODEs. Since the vectors
are linearly independent, a fundamental matrix is given by

Ψ(t) =

(
t t−1

t 3t−1

)
.

The inverse of the fundamental matrix is

Ψ−1(t) =
1

2

(
3t−1 −t−1
−t t

)
.

From the given problem statement

g(t) =

(
t−1 − t

2

)
after dividing both sides by t 6= 0. Proceeding with the method of variation of
parameters,

Ψ−1(t)g(t) =

(
−3/2− t−1 + (3/2)t−2

−1/2 + t− t2/2

)
,

and

u =

∫
Ψ−1(t)g(t) dt =

(
−(3/2)t− ln t− (3/2)t−1 + c1
−t/2 + t2/2− t3/6 + c2

)
.

Multiplication of u by Ψ(t) yields the desired solution.




